People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schulz, Stephan
University of Duisburg-Essen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Homoleptic and heteroleptic ketodiiminate zinc complexes for the ROP of cyclic l-lactidecitations
- 2021Interface-Dominated Topological Transport in Nanograined Bulk Bi2 Te3
- 2021Interface-Dominated Topological Transport in Nanograined Bulk Bi2 Te3citations
- 2021Synergistic effects of Mo2C-NC@FexCoy core-shell nanoparticles in electrocatalytic overall water splitting reactioncitations
- 2021Link between structural and optical properties of Co<sub><i>x</i></sub>Fe<sub>3–<i>x</i></sub>O<sub>4</sub> nanoparticles and thin films with different Co/Fe ratioscitations
- 2020Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reactioncitations
- 2020Covalently bonded Compounds of Heavy Group 15/16 Elements: Synthesis, Structure and Potential Application in Material Sciencescitations
- 2020Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as Single Source Precursorcitations
- 2020Solvent-induced ion separation of a beryllium scorpionate complexcitations
- 2020Synthesis, reactivity and applications of zinc-zinc bonded complexescitations
- 2020Van der Waals epitaxial MOCVD-growth of (BixSb1-x)2Te3 (0<x<1) filmscitations
- 2020Chemical Vapor Deposition of Si/SiC Nano-Multilayer Thin Filmscitations
- 2020Formation and characterization of Fe3+- / Cu2+- modified zirconium oxide conversion layers on zinc alloy coated steel sheetscitations
- 2020Thermoelectric transport- and Hall measurements of low defect Sb2Te3 thin films grown by Atomic Layer Deposition ; Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer depositioncitations
- 2020Low-Temperature MOCVD Deposition of Crystalline Ga2O3 Nanowires using t-Bu3Ga ; Low‐Temperature MOCVD of Crystalline Ga2O3 Nanowires using tBu3Gacitations
- 2020Structural characterization of Sb2Et4 and Bi2Et4 ; Structural Characterization of Et4Sb2 and Et4Bi2citations
- 2020Synthesis and X-ray crystal structure of diimidosulfinate transition metal complexescitations
- 2020Organosilane modified Zr-based conversion layer on Zn-Al alloy coated steel sheetscitations
- 2020Methanetrisamidines in Coordination Chemistry - Syntheses, Structures and CH-NH Tautomerismcitations
- 2019Heterolepic β-Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactidecitations
- 2019Heterolepic β‐Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide
- 2019Synergistic Effects of Mo<sub>2</sub>C‐NC@Co<sub><i>x</i></sub>Fe<sub><i>y</i></sub> Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reactioncitations
- 2018Low intrinsic c-axis thermal conductivity in PVD grown epitaxial Sb2Te3 filmscitations
- 2017Improving the zT value of thermoelectrics by nanostructuringcitations
- 2016Synthesis and solid state structure of a metalloid tin cluster [Sn10(trip8)].citations
- 2015(Me)L2Zn2(μ-1,6-Ph2-N6) - a building block for new hexazene complexes.citations
- 2014Thermopower engineering of Bi2Te3 without alloying: the interplay between nanostructuring and defect activationcitations
- 2013Formation and characterization of Fe3+-/Cu2+-modified zirconium oxide conversion layers on zinc alloy coated steel sheets
- 2005Studies on the synthesis, structure and reactivity of heterocyclic metallonitridophosphinatescitations
Places of action
Organizations | Location | People |
---|
article
Synergistic Effects of Mo<sub>2</sub>C‐NC@Co<sub><i>x</i></sub>Fe<sub><i>y</i></sub> Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction
Abstract
<jats:sec><jats:label /><jats:p>Transition metals (TMs) are highly investigated as nonprecious electrocatalysts for hydrogen evolution (HER) and oxygen evolution (OER) reactions. There is a strong demand for highly efficient and inexpensive catalysts for overall water splitting. Herein, the bimetallic Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub><jats:italic>y</jats:italic></jats:sub> alloy nanoparticles encapsulated in a N‐doped graphene shell containing molybdenum carbide (Mo<jats:sub>2</jats:sub>C) nanoparticles are synthesized by the pyrolysis of cobalt ferrite (Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub>) nanoparticles coated by melamine‐formaldehyde resin cross‐linked with molybdic acid. Molybdic acid not only serves as precursor for the formation of highly dispersed Mo<jats:sub>2</jats:sub>C nanoparticles in the N‐doped graphene shell but also enhances the thermal stability of the organic shell, resulting in the formation of smaller Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub><jats:italic>y</jats:italic></jats:sub> cores. The formation of Mo<jats:sub>2</jats:sub>C nanoparticles in the graphene shell is promoted by the Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub> core. Interestingly, the synergistic presence of Mo<jats:sub>2</jats:sub>C nanoparticles not only enhances the HER activity of the material but also renders a partial breakage of the graphene shell, which increases the surface concentration of OER‐active Co and therefore enhances the OER activity. The as‐prepared TM‐based materials serve as bifunctional catalysts for the overall water splitting and exhibit improved electrocatalytic performances compared to standard cells based on precious metals, with the potentials of 1.53 and 1.60 V at 10 and 20 mA cm<jats:sup>−2</jats:sup> in alkaline media, respectively.</jats:p></jats:sec>