People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sorsa, Olli
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Hydrogen evolution in alkaline medium on intratube and surface decorated PtRu catalystcitations
- 2019Stable reference electrode in polymer electrolyte membrane electrolyser for three-electrode measurementscitations
- 2019Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo-Layered Double Hydroxide and Nitrogen-Doped Graphene Using a Simple Fabrication Methodcitations
- 2019Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo-Layered Double Hydroxide and Nitrogen-Doped Graphene Using a Simple Fabrication Methodcitations
- 2017Co-electrodeposited mesoporous PtM (M=Co, Ni, Cu) as an active catalyst for oxygen reduction reaction in a polymer electrolyte membrane fuel cellcitations
- 2015Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cellscitations
Places of action
Organizations | Location | People |
---|
article
Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo-Layered Double Hydroxide and Nitrogen-Doped Graphene Using a Simple Fabrication Method
Abstract
<p>A high-performing, lightweight, and flexible asymmetric supercapacitor (ASC) using NiCo-layered double hydroxide (NiCo LDH) supported on 3D nitrogen-doped graphene (NG) as a positive electrode and NG as a negative electrode is demonstrated. Highly conductive NG provides fast electron transfer and facilitates (dis)charging of NiCo LDH deposited on it. The composite electrode of NiCo LDH@NG exhibits a high specific capacitance of 1421 F g<sup>−1</sup>at 2 A g<sup>−1</sup>. Moreover, the as-obtained hybrid electrode shows an excellent rate capability with a specific capacitance of 1397 F g<sup>−1</sup>at a high current density of 10 A g<sup>−1</sup>, which is about 98% of the capacitance obtained at 2 A g<sup>−1</sup>. The flexible ASC device shows a specific capacitance of 109 F g<sup>−1</sup>at 0.5 A g<sup>−1</sup>and a maximum energy density of 49 W h kg<sup>−1</sup>, which is comparable with or superior to previously reported electrodes based on nickel-cobalt hydroxides. Furthermore, an excellent mechanical stability is obtained. Under repeated mechanical bendings, the ASC demonstrates high bending stability up to 450 bending cycles at a 90° angle. Hence, this flexible NiCo LDH@NG electrode that is free of binders and conductive agents shows superior performance and stability, and is a promising candidate for the future wearable energy storage devices.</p>