Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ma, Yang Bin

  • Google
  • 1
  • 7
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Impact of Polarization Dynamics and Charged Defects on the Electrocaloric Response of Ferroelectric Pb(Zr,Ti)O3 Ceramics20citations

Places of action

Chart of shared publication
Bradeško, Andraž
1 / 3 shared
Rojac, Tadej
1 / 15 shared
Novak, Nikola
1 / 8 shared
Weyland, Florian
1 / 3 shared
Koruza, Jurij
1 / 50 shared
Albe, Karsten
1 / 18 shared
Xu, Bai Xiang
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Bradeško, Andraž
  • Rojac, Tadej
  • Novak, Nikola
  • Weyland, Florian
  • Koruza, Jurij
  • Albe, Karsten
  • Xu, Bai Xiang
OrganizationsLocationPeople

article

Impact of Polarization Dynamics and Charged Defects on the Electrocaloric Response of Ferroelectric Pb(Zr,Ti)O3 Ceramics

  • Bradeško, Andraž
  • Rojac, Tadej
  • Ma, Yang Bin
  • Novak, Nikola
  • Weyland, Florian
  • Koruza, Jurij
  • Albe, Karsten
  • Xu, Bai Xiang
Abstract

<p>The impact of charged point defects on the electrocaloric response of morphotropic Pb(Zr,Ti)O<sub>3</sub> (PZT) ceramics is investigated using direct electrocaloric and polarization hysteresis measurements. The electrocaloric response determined for undoped, hard-, and soft-doped PZT is rationalized by considering the dipolar entropy change over polarization change and hysteresis losses. The highest electrocaloric effect is observed in poled hard PZT with the field applied along the poling direction, which is related to the reduced hysteresis losses caused by internal electric fields associated with defect complexes. The weak hysteretic dependency of polarization as function of the electric field in hard PZT also allows inducing an inverse electrocaloric effect. The experimental results are compared with model calculations that provide a physical interpretation. The results reveal how the electrocaloric response of ferroelectrics can be optimized by defect engineering.</p>

Topics
  • impedance spectroscopy
  • ceramic
  • point defect