Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kittner, Christina

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Modeling metal forming of a magnesium alloy using an adapted material modelcitations

Places of action

Chart of shared publication
Bräunling, Sven
1 / 3 shared
Prahl, Ulrich
1 / 34 shared
Küsters, Niklas
1 / 1 shared
Weck, Daniel
1 / 31 shared
Brosius, Alexander
1 / 48 shared
Kittner, Kristina
1 / 1 shared
Wolf, Alexander
1 / 8 shared
Gude, Mike
1 / 775 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bräunling, Sven
  • Prahl, Ulrich
  • Küsters, Niklas
  • Weck, Daniel
  • Brosius, Alexander
  • Kittner, Kristina
  • Wolf, Alexander
  • Gude, Mike
OrganizationsLocationPeople

article

Modeling metal forming of a magnesium alloy using an adapted material model

  • Kittner, Christina
  • Bräunling, Sven
  • Prahl, Ulrich
  • Küsters, Niklas
  • Weck, Daniel
  • Brosius, Alexander
  • Kittner, Kristina
  • Wolf, Alexander
  • Gude, Mike
Abstract

Modeling sheet metal forming of materials for lightweight construction requires an understanding of their plastic behavior in different loading directions. The presented work focuses on twin-roll-casted magnesium alloy AZ31. It is characterized by unique mechanical properties compared to other magnesium alloys due to the employed twin-roll-casting-process. In general, magnesium alloys with their hexagonal closed-packed structure possess a complex forming behavior including a deformation-induced anisotropy evolution. In the context of a fast design approach, an adaptation of the Yield2000-2d criteria usually used for body-centered cubic or face-centered cubic materials is tested. The goal is a simple, versatile material model which parameters are determined just by tensile tests with moderate testing effort. In the investigated model, the yield locus definition is modified by adding a term for the yield exponent evolution during the forming process. The modeling approach is presented and the necessary tests for material data acquisition and evaluation are described. After experimental identification of the model parameters, the material model is applied in a forming simulation. The investigation provides promising results matching well with experimental data. Thus, the application of this model in a fast design step is feasible, offering valuable data like deformed shape, process-related material properties and induced stresses for further processing.

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • Magnesium
  • magnesium alloy
  • Magnesium
  • casting
  • forming
  • drawing