People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ziegs, Jean-Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Thermo‐mechanical modeling of the temperature dependent forming behavior of thermoplastic prepregscitations
- 2020Numerical modeling of single-step thermoforming of a hybrid metal/FRP lightweight structure
- 2019Thermo‐Mechanical Modeling of Pre‐Consolidated Fiber‐Reinforced Plastics for the Simulation of Thermoforming Processes
- 2019Smart Design von Metall-FKV-Hybridstrukturen mit verknüpfter Prozess- und Struktursimulation
- 2019Thermo-mechanische Modellierung des Umformverhaltens von Faserkunststoffverbunden
- 2018Coupled process and structure analysis of metal-FRP-hybrid structures
Places of action
Organizations | Location | People |
---|
article
Thermo‐mechanical modeling of the temperature dependent forming behavior of thermoplastic prepregs
Abstract
Numerical optimization of the manufacturing process of hybrid lightweight structures consisting of fiber-reinforced plastics is of great importance. This article introduces an industry-oriented modeling approach for the thermoforming process of thermoplastic prepregs. A laminate model combined with established elastic-plastic constitutive laws is used for the numerical treatment of the temperature dependent material behavior of the composite. The mechanical properties of the Polyamide 66 (PA66) matrix are acquired from a data sheet provided by the manufacturer. Experiments including tensile, shear, and bending tests are performed to characterize the effective deformation behavior of the prepreg in the full temperature range. Appropriate model parameters are determined to represent the temperature dependent deformation behavior of the composite according to the experimental observations. The parameterized material model for the prepreg is eventually applied in the simulation of thermoforming processes to show the influence of process and material parameters on the forming behavior of thermoplastic prepregs.