Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zarrougui, Ramzi

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Simultaneous detection of trace Pb(II) and Cd(II) cations in ore samples by anodic stripping analysis using pMO/erGO‐modified glassy carbon electrodes5citations

Places of action

Chart of shared publication
Fall, Modou
1 / 4 shared
Sebei, Abdelaziz
1 / 1 shared
Diédhiou, Ismaila
1 / 1 shared
Aoun, Sami Ben
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fall, Modou
  • Sebei, Abdelaziz
  • Diédhiou, Ismaila
  • Aoun, Sami Ben
OrganizationsLocationPeople

article

Simultaneous detection of trace Pb(II) and Cd(II) cations in ore samples by anodic stripping analysis using pMO/erGO‐modified glassy carbon electrodes

  • Fall, Modou
  • Sebei, Abdelaziz
  • Diédhiou, Ismaila
  • Zarrougui, Ramzi
  • Aoun, Sami Ben
Abstract

<jats:title>Abstract</jats:title><jats:p>Environmental safety is of paramount importance for human well‐being, imposing significant demands for affordable, rapid, portable, and robust analytical tools for real‐time and on‐site water monitoring. In this context, we have developed an analytical method to efficiently detect heavy metal ions, particularly Pb<jats:sup>2+</jats:sup> ions, in water samples. This method employs a stepwise‐prepared electrode comprised of a thin film of poly(methyl orange) (pMO) electrochemically deposited onto reduced graphene oxide (erGO), which is in turn coated on a glassy carbon electrode (GCE). The resulting pMO/erGO/GCE electrode was characterized using Raman spectroscopy, scanning electron microscopy (SEM), and electrochemical techniques. Square wave anodic stripping voltammetry (SWASV) was subsequently employed to detect the target ions. Importantly, the pMO/erGO/GCE electrode exhibits excellent analytical performance, featuring a broad linear concentration range spanning from 14 to 595 parts per billion (ppb), a sensitivity of 5.60 μA ppb<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>, and a theoretical calculated value of the detection limit of 0.82 ppb. The effectiveness of this sensor was validated through successful testing of aqueous samples from dissolved ores containing both lead(II) and cadmium(II) cations, as determined by atomic absorption spectroscopy.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • thin film
  • Raman spectroscopy
  • Cadmium
  • stripping voltammetry