People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Labat, Maria Del Mar Baeza
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Microflow Injection System for Efficient Cu(II) Detection across a Broad Range
- 2024Amperometric Inkjet-Printed Thyroxine Sensor Based on Customized Graphene and Tunned Cyclodextrins as the Preconcentration Elementcitations
- 2022Composite Electrodes Based on Carbon Materials Decorated with Hg Nanoparticles for the Simultaneous Detection of Cd(II), Pb(II) and Cu(II)citations
- 20200D polymer nanocomposite carbon-paste electrodes using carbon nanohornscitations
- 2020Customized In Situ Functionalization of Nanodiamonds with Nanoparticles for Composite Carbon-Paste Electrodescitations
- 2018Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrodecitations
- 2018Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samplescitations
- 2017Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Reviewcitations
- 2017Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensingcitations
- 2016Characterization protocol to improve the electroanalytical response of graphene-polymer nanocomposite sensorscitations
- 2016Highly sensitive electrochemical immunosensor for IgG detection based on optimized rigid biocompositescitations
- 2016Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrincitations
- 2016Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dotscitations
- 2016CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behaviorcitations
- 2016Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocompositescitations
- 2015Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorinecitations
- 2015Improvement of the detection limit for biosensors: Advances on the optimization of biocomposite compositioncitations
- 2015Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensorscitations
- 2014Towards to the improvement of the analytical response in voltammetric sensors based on rigid compositescitations
- 2014Simple green routes for the customized preparation of sensitive carbon nanotubes/epoxy nanocomposite electrodes with functional metal nanoparticlescitations
- 2011Towards a monolithically integrated microsystem based on the green tape ceramics technology for spectrophotometric measurements. Determination of chromium (VI) in watercitations
- 2009Novel amperometric sensor based on rigid near-percolation compositecitations
Places of action
Organizations | Location | People |
---|
article
Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Review
Abstract
© 2017 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Over the past few decades, the (bio)functionalization of carbon nanomaterials (CNMs), such as nanohorns, carbon nanotubes, graphene, graphite and related with a wide range of (bio)modifiers have been extensively studied for their incorporation on different pure metal or carbon electrode surfaces via drop-casting. However, CNMs are also shown to be important functional additives for polymers, having great potential to produce rigid nanocomposite materials with a range of enhanced properties, including mechanical, optical, electrical, thermal and electrochemical. The high malleability derived from the host polymer allows alternative strategies that can be carried out in order to incorporate different types of (bio)modifiers in/on/into a polymeric nanocomposite electrode. Accordingly, this mini review overviews the main methodologies used for the bio-functionalization of electrochemical transducers based on nanocomposite carbon paste electrodes (NC-CPEs). Additionally, the most extensively (bio)modifiers used in electrochemical (bio)sensing, together with their various electrocatalytical performance are also discussed, fact that might serve as a general outlook for planning further research.