People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xiao, Xinxin
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Understanding molecular and electrochemical charge transfer: theory and computationscitations
- 2019Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O2 Biofuel Cellscitations
- 2019Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O2 Biofuel Cellscitations
- 2019Use of Polymer Coatings to Enhance the Response of Redox-Polymer-Mediated Electrodescitations
- 2019Three-dimensional bioelectrodes utilizing graphene based bioinkcitations
- 2019Three-dimensional sulfite oxidase bioanodes based on graphene functionalized carbon paper for sulfite/O-2 biofuel cellscitations
- 2017A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold:An autonomous pulse generatorcitations
- 2017Immobilization of Redox Enzymes on Nanoporous Gold Electrodes: Applications in Biofuel Cellscitations
- 2017A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous goldcitations
- 2017Immobilization of Redox Enzymes on Nanoporous Gold Electrodescitations
- 2016Nanoporous Gold Electrodes with Tuneable Pore Sizes for Bioelectrochemical Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Nanoporous Gold Electrodes with Tuneable Pore Sizes for Bioelectrochemical Applications
Abstract
Nanoporous gold (NPG) fabricated by sputtering is a material of versatile morphology with pores whose size can be tailored to accommodate enzymes. The process of pore formation and the size of the pores in NPG are influenced by the composition of Au and Ag in the alloy used to prepare the electrodes together with the temperature and time period of the dealloying process. On increasing the time from 1 to 60 min and the temperature from 0.5 °C to 60.5 °C in concentrated HNO 3 , significant increases in the average pore diameters from 4.4 to 78 nm were observed with simultaneous decreases in the roughness factor (R f ). The pores of NPG were fully addressable regardless of the diameter, with R f increasing linearly up to an alloy thickness of 500 nm. The influence of the pore size on the bioelectrochemical response of redox proteins was evaluated using cytochrome c as a model system. The highest current densities of ca. 30 µA cm −2 were observed at cytochrome c modified NPG electrodes with an average pore size of ca. 10 nm. The pores in NPG were also tuned for the mediatorless immobilization of Myrothecium verrucaria bilirubin oxidase. High current densities of ca. 65 µA cm −2 were observed at MvBOD modified NPG electrodes prepared by dealloying at 0.5 °C for 5 min with an average pore size of 8 nm, which is too small to accommodate the enzyme into the pores, indicating that the response was from enzyme adsorbed on the electrode surface.