Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bonn, M. J.

  • Google
  • 1
  • 3
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Carbon nanoriber-polystyrene composite electrodes for electroanalytical processes26citations

Places of action

Chart of shared publication
Marken, Frank
1 / 91 shared
Rassaei, L.
1 / 8 shared
Sillanpaa, M.
1 / 8 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Marken, Frank
  • Rassaei, L.
  • Sillanpaa, M.
OrganizationsLocationPeople

article

Carbon nanoriber-polystyrene composite electrodes for electroanalytical processes

  • Marken, Frank
  • Bonn, M. J.
  • Rassaei, L.
  • Sillanpaa, M.
Abstract

Carbon nanofibers provide an active and well-defined high surface area material for electroanalytical processes. In this study a novel procedure is suggested for compacting carbon nanofiber (CNF) materials (diameter typically 100200 nm) with a polystyrene (PS) binder and additives into highly conducting and re-polishable CNF-PS composite electrodes. Three types of carbon nanofibers (Pyrograf III, 70-200 nra diameter) and a range of compositions are surveyed. A 33 wt% carbon nanofibers in polystyrene electrode provides optimum electrical conductivity and reactivity. The capacitive background current responses from CNF-PS electrodes are lowered (compared to those at glassy carbon) due to the reduced active surface area of the exposed carbon. However, faradaic currents for the reduction of Ru(NH3)(3+)(6) at CNF-PS electrodes are approaching those for diffusion controlled processes. Resistivity measurements - 6 indicate a typical pellet resistance of 200-400 Omega mm(-1) at 3 mm diameter. Anodic stripping voltarnmetry experiments for the Pb2+ System are reported and SEM images of electrodeposited Pbmetal are used to demonstrate the uniformly reactive surface of the CNF-PS electrode. Finally, the redox system 1,1'-ferrocenedicarboxylic acid is immobilized onto the carbon nanofibers and incorporated into the CNF-PS pellet electrodes. The voltammetric signal observed in aqueous media is consistent with release of the oxidized form of ferrocenedicarboxylic acid into solution.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • resistivity
  • scanning electron microscopy
  • experiment
  • reactive
  • composite
  • electrical conductivity