Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grehan, Kieron J.

  • Google
  • 2
  • 5
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2003Nanodiamond thin film electrodes13citations
  • 2003Influence of thin film properties on the electrochemical performance of diamond electrodes33citations

Places of action

Chart of shared publication
Foord, John S.
2 / 8 shared
Marken, Frank
2 / 91 shared
Compton, Richard G.
2 / 10 shared
Hian, Lau Chi
2 / 2 shared
Goeting, Christiaan H.
1 / 3 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Foord, John S.
  • Marken, Frank
  • Compton, Richard G.
  • Hian, Lau Chi
  • Goeting, Christiaan H.
OrganizationsLocationPeople

article

Nanodiamond thin film electrodes

  • Foord, John S.
  • Marken, Frank
  • Compton, Richard G.
  • Hian, Lau Chi
  • Grehan, Kieron J.
  • Goeting, Christiaan H.
Abstract

<p>The properties of a nanodiamond thin film deposit formed on titanium substrates in a microwave-plasma enhanced CVD process, are investigated for applications in electroanalysis. The nanodiamond deposit consists of intergrown nano-sized platelets of diamond with a high sp<sup>2</sup> carbon content giving it high electrical conductivity and electrochemical reactivity. Nanodiamond thin film electrodes (of approximately 2 μm thickness) are characterized by electron microscopy and electrochemical methods. First, for a reversible one electron redox system, Ru(NH<sub>3</sub>)<sub>6</sub><sup>3+/2+</sup>, nanodiamond is shown to give well-defined diffusion controlled voltammetric responses. Next, metal deposition processes are shown to proceed on nanodiamond with high reversibility and high efficiency compared to processes reported on boron-doped diamond. The nucleation of gold is shown to be facile at edge sites, which are abundant on the nanodiamond surface. For the deposition and stripping of both gold and copper, a stripping efficiency (the ratio of electro-dissolution charge to electro-deposition charge) of close to unity is detected even at low concentrations of analyte. The effect of thermal annealing in air is shown to drastically modify the electrode characteristics probably due to interfacial oxidation, loss of active sp<sup>2</sup> sites, and loss of conductivity.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • thin film
  • gold
  • copper
  • Boron
  • titanium
  • electron microscopy
  • annealing
  • electrical conductivity
  • chemical vapor deposition
  • carbon content