People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Hecke, Kristof
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Elucidating the Non-Covalent Interactions that Trigger Interdigitation in Lead-Halide Layered Hybrid Perovskites.citations
- 2024Elucidating the non-covalent interactions that trigger interdigitation in lead-halide layered hybrid perovskitescitations
- 2024Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure
- 2023Visible light‐fueled mechanical motions with dynamic phosphorescence induced by topochemical [2+2] reactions in organoboron crystalscitations
- 20233D Perovskite Passivation with a Benzotriazole-Based 2D Interlayer for High-Efficiency Solar Cells.
- 20233D perovskite passivation with a benzotriazole-based 2D interlayer for high-efficiency solar cellscitations
- 2023Turning 3D covalent organic frameworks into luminescent ratiometric temperature sensorscitations
- 2022Improving green Yb3+/Er3+ upconversion luminescence by co-doping metal ions into an oxyfluoride matrix
- 2022Hybrid lanthanide-doped rattle-type thermometers for theranosticscitations
- 2022CuI nanoparticle-catalyzed regioselective synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines using oxygen as oxidantcitations
- 2021Directing the self-assembly of conjugated organic ammonium cations in low-dimensional perovskites by halide substitutioncitations
- 2019Chromium(iii) in deep eutectic solvents: towards a sustainable chromium(vi)-free steel plating processcitations
- 2018Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperaturescitations
- 2018Understanding the importance of Cu(I) intermediates in self-reducing molecular inks for flexible electronicscitations
- 2016Mechanochemically synthesized crystalline luminescent 2D coordination polymers of La3+ and Ce3+, doped with Sm3+, Eu3+, Tb3+, and Dy3+: synthesis, crystal structures and luminescencecitations
- 2012Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligandscitations
- 2010Cobalt(II) complexes of nitrile-functionalized ionic liquidscitations
- 2009Pyrrolidinium Ionic Liquid Crystalscitations
- 2004Lanthanide(III) nitrobenzenesulfonates as new nitration catalysts: The role of the metal and of the counterion in the catalytic efficiencycitations
Places of action
Organizations | Location | People |
---|
article
Lanthanide(III) nitrobenzenesulfonates as new nitration catalysts: The role of the metal and of the counterion in the catalytic efficiency
Abstract
Lanthanide(III) complexes of p-nitrobenzenesulfonic acid, Ln(p-NBSA)(3), m-nitrobenzenesulfonic acid, Ln(m-NBSA)(3), and 2,4-nitrobenzenesulfonic acid, Ln(2,4-NBSA)(3), were prepared, characterized and examined as catalyst for the nitration of benzene, toluene, xylenes, naphthalene, bromobenzene and chlorobenzene. The initial screening of the catalysts showed that lanthanum(III) complexes were more effective than the corresponding ytterbium(III) complexes, and that catalysts containing the bulky 2,4-NBSA ligand were less effective than the catalyst containing p-NBSA (nosylate) or m-NBSA ligands. Examination of a series of Ln(p-NBSA)(3) and Ln(m-NBSA)(3) catalysts revealed that there is a clear correlation between the ionic radii of the lanthanide(III) ions and the yields of nitration, with the lighter lanthanides being more effective. The X-ray single crystal structure of Yb(m-NBSA)(3).6H(2)O shows that two m-NBSA ligands are directly bound to the metal centre while the third ligand is not located in the first coordination sphere, but it is hydrogen bonded to one of the water molecules which is coordinated to ytterbium(III). NMR studies suggest that this structure is preserved under the conditions used in the nitration reaction. The structure of Yb(m-NBSA)(3) is markedly different from the structure of the well-known ytterbium(III) triflate catalyst. The coordination of the nitrobenzenesulfonate counterion to the lanthanide(III) ion suggests that steric effects might play an important role in determining the efficiency of these novel nitration catalysts. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).