Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bernauer, Jan

  • Google
  • 11
  • 38
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Single‐Source Precursor Synthesis of a Compositionally Complex Early Transitional Metal Carbonitride (Ti,Zr,Hf,Nb,Ta)NₓC₁₋ₓcitations
  • 2024Room‐Temperature Synthesis of a Compositionally Complex Rare‐Earth Carbonate Hydroxide and its Conversion into a Bixbyite‐Type High‐Entropy Sesquioxide3citations
  • 2024Exceptional Hardness and Thermal Properties of SiC/(Hf,Ta)C(N)/(B)C Ceramic Composites Derived from Single‐Source Precursorcitations
  • 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sinteringcitations
  • 2024Thermal Conductivity Analysis of Polymer‐Derived Nanocomposite via Image‐Based Structure Reconstruction, Computational Homogenization, and Machine Learningcitations
  • 2024Microstructure Characterization and Mechanical Properties of Polymer‐Derived (Hf<sub><i>x</i></sub>Ta<sub>1−<i>x</i></sub>)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering4citations
  • 2024Oxidation Resistance and Microstructural Analysis of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Nanocompositescitations
  • 2024Polymer‐Derived Ceramic Coatings with Excellent Thermal Cycling Stabilitycitations
  • 2023Microstructural evolution of novel Si(M)(BC)N polymer-derived ceramics upon different heat treatmentscitations
  • 2022Microstructural evolution of Si(HfₓTa₁₋ₓ)(C)N polymer-derived ceramics upon high-temperature anneal11citations
  • 2022Single-source-precursor derived bulk Si3N4HfBxN(1-x) ceramic nanocomposites with excellent oxidation resistance6citations

Places of action

Chart of shared publication
Matovic, Branko
1 / 6 shared
Zagorac, Dejan
1 / 23 shared
Ionescu, Emanuel
7 / 28 shared
Teppala, Dharma Teja
2 / 2 shared
Rashid, Aasir
1 / 1 shared
Pejic, Milan
1 / 1 shared
Trapp, Maximillian
1 / 1 shared
Kleebe, Hansjoachim
1 / 4 shared
Wiehl, Leonore
2 / 5 shared
Pundt, Astrid
7 / 26 shared
Riedel, Ralf
8 / 33 shared
Galetz, Mathias
1 / 7 shared
Petry, Nilschristian
4 / 4 shared
Thor, Nathalie
7 / 7 shared
Kredel, Samuel Aeneas
2 / 2 shared
Lepple, Maren
4 / 10 shared
Schwaiger, Ruth
2 / 25 shared
Beck, Katharina
2 / 8 shared
Wang, Jin
2 / 4 shared
Kolb, Ute
2 / 21 shared
Winkens, Georg
2 / 5 shared
Fathidoost, Mozhdeh
1 / 1 shared
Yang, Yangyiwei
1 / 4 shared
Xu, Baixiang
1 / 2 shared
Ulrich, Anke Silvia
1 / 8 shared
Galetz, Mathias Christian
1 / 3 shared
Kleebe, Hans-Joachim
2 / 29 shared
Petry, Nils-Christian
2 / 3 shared
Hofmann, Jan Philipp
1 / 10 shared
Widenmeyer, Marc
1 / 10 shared
Riedel, Ralf R.
1 / 2 shared
Weidenkaff, Anke
1 / 57 shared
Tian, Chuanmu
1 / 3 shared
Li, Wei
1 / 31 shared
Du, Hanzi
1 / 1 shared
Jiang, Tianshu
1 / 5 shared
Yu, Zhaoju
1 / 3 shared
Molina-Luna, Leopoldo
1 / 30 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Matovic, Branko
  • Zagorac, Dejan
  • Ionescu, Emanuel
  • Teppala, Dharma Teja
  • Rashid, Aasir
  • Pejic, Milan
  • Trapp, Maximillian
  • Kleebe, Hansjoachim
  • Wiehl, Leonore
  • Pundt, Astrid
  • Riedel, Ralf
  • Galetz, Mathias
  • Petry, Nilschristian
  • Thor, Nathalie
  • Kredel, Samuel Aeneas
  • Lepple, Maren
  • Schwaiger, Ruth
  • Beck, Katharina
  • Wang, Jin
  • Kolb, Ute
  • Winkens, Georg
  • Fathidoost, Mozhdeh
  • Yang, Yangyiwei
  • Xu, Baixiang
  • Ulrich, Anke Silvia
  • Galetz, Mathias Christian
  • Kleebe, Hans-Joachim
  • Petry, Nils-Christian
  • Hofmann, Jan Philipp
  • Widenmeyer, Marc
  • Riedel, Ralf R.
  • Weidenkaff, Anke
  • Tian, Chuanmu
  • Li, Wei
  • Du, Hanzi
  • Jiang, Tianshu
  • Yu, Zhaoju
  • Molina-Luna, Leopoldo
OrganizationsLocationPeople

article

Room‐Temperature Synthesis of a Compositionally Complex Rare‐Earth Carbonate Hydroxide and its Conversion into a Bixbyite‐Type High‐Entropy Sesquioxide

  • Bernauer, Jan
  • Ionescu, Emanuel
  • Trapp, Maximillian
  • Kleebe, Hansjoachim
  • Wiehl, Leonore
Abstract

<jats:title>Abstract</jats:title><jats:p>In the present work, the solvent‐deficient synthesis of the high‐entropy rare‐earth carbonate hydroxide RE(CO<jats:sub>3</jats:sub>)(OH) (RE=La, Ce, Pr, Nd, Sm, and Gd) and its thermal conversion into bixbyite‐type sesquioxide RE<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> are reported for the first time. The high‐entropy rare earth carbonate hydroxide was prepared via mechanochemical reaction of the corresponding metal nitrate hydrates with ammonium hydrogen carbonate followed by the removal of the NH<jats:sub>4</jats:sub>NO<jats:sub>3</jats:sub> by‐product. Calcination of the carbonate hydroxide precursor in ambient atmosphere at temperatures in the range from 500 to 1000 °C led to the high‐entropy rare earth sesquioxide which exhibited a bixbyite‐type structure (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/ejic202300330-math-0001.png" xlink:title="urn:x-wiley:14341948:media:ejic202300330:ejic202300330-math-0001" /> ) independent of the calcination temperature. Transmission electron microscopy (TEM) investigation revealed the homogeneous distribution of all six rare earth cations in the high‐entropy sesquioxide lattice, however, with some compositional variation between individual grains. The bixbyite‐type structure may be considered as the result of heavy doping of the fluorite‐type CeO<jats:sub>2</jats:sub> lattice with the other rare earth cations, which leads to a high concentration of oxygen vacancies, as revealed by electron diffraction and Raman spectroscopy data. The solvent‐deficient synthesis method used in the present study is considered as a valuable, straightforward and easily up‐scalable method to synthesize compositionally complex oxide ceramics.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • Oxygen
  • electron diffraction
  • Hydrogen
  • transmission electron microscopy
  • Raman spectroscopy
  • oxide ceramic