People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guedes, Alexandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Highly Efficient and Magnetically Recyclable Non-Noble Metal Fly Ash-Based Catalysts for 4-Nitrophenol Reductioncitations
- 2024Graphitization: Microstructural and microtextural transformations of residual char from international coal combustion ashcitations
- 2024Graphitization: Microstructural and microtextural transformations of residual char from international coal combustion ashcitations
- 2023FoodSmarTag: An innovative dynamic labeling system based on pyranoflavylium-based colorimetric films for real-time monitoring of food freshnesscitations
- 2021Graphene@Metal Sulfide/Oxide Nanocomposites as Novel Photo-Fenton-like Catalysts for 4-Nitrophenol Degradationcitations
- 2020Hydrothermal Carbon/Carbon Nanotube Composites as Electrocatalysts for the Oxygen Reduction Reactioncitations
- 2018Electrochemical genoassays on gold-coated magnetic nanoparticles to quantify genetically modified organisms (GMOs) in food and feed as GMO percentagecitations
- 2018Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technologycitations
- 2018Petrographic and SEM/EDS characterization of bottom ash fractions obtained using magnetic separation equipment
- 2018Heteroatom-Doped Carbon Nanomaterials as Metal-Free Catalysts for the Reduction of 4-Nitrophenolcitations
- 2016Characterization of bottom ash of Pliocene lignite as ceramic composites raw material by petrographic, SEM/EDS and Raman microspectroscopical methodscitations
- 2014Tailored design of CoxMn1-xFe2O4 nanoferrites: a new route for dual control of size and magnetic propertiescitations
- 2014Gold nanoparticles decorated on Bingel-thiol functionalized multiwall carbon nanotubes as an efficient and robust catalystcitations
- 2012Multianalytical approaches to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciationcitations
- 2012Superparamagnetic MFe2O4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Routecitations
Places of action
Organizations | Location | People |
---|
article
Graphene@Metal Sulfide/Oxide Nanocomposites as Novel Photo-Fenton-like Catalysts for 4-Nitrophenol Degradation
Abstract
Herein, S-doped graphene flakes-based composites with Fe3O4 and/or CuS nanoparticles (NPs) are reported as photo-Fenton catalysts for the 4-nitrophenol (4-NP) degradation. The S-doped graphene flakes (S-GF) were prepared using a thermal treatment approach, and the nanocomposites by the in situ growth of Fe3O4 and/or CuS onto the S-GF scaffold. The characterization methods confirmed the formation of two- and three-components nanocomposites. The Fe3O4 NPs presented a cubic inverse spinel structure and the CuS phases a covellite structure, both with smaller crystallite sizes in the nanocomposites. The new nanocomposites showed higher ability to catalyze the photo-Fenton 4-NP degradation than the individual components. The S-GF@CuS-Fe3O4 nanocomposite exhibited the best catalytic activity: 95.2 % of 4-NP degradation, a kinetic of pseudo-first order (k=0.016 min(-1)), high photo-Fenton catalytic stability and catalyst's composition/structure preservation. The CuS NPs showed an important role in the photo-Fenton-like catalytic activity improvement.