People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weiz, Alexander
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Optimized Synthesis of the Bismuth Subiodides BmI4 (m = 4, 14, 16, 18) and the Electronic Properties of Bi14I4 and Bi18I4
Abstract
We optimized the syntheses of α- and β-Bi4I4 and transferred the method to the very bismuth-rich iodides Bi14I4, Bi16I4, and Bi18I4. Phase-pure, microcrystalline powders of BimI4 (m = 4, 14, 18) can now by synthesized on a multigram scale. Conditions for the growth of single crystals of Bi16I4 and Bi18I4 were determined. The redetermination of the crystal structure of Bi16I4 hints at a stacking disorder or the presence of 1∞[BimI4] ribbons with m = 14 and 18 among the dominant type along with m = 16. The electronic band structures for m = 14, 16, and 18 were calculated including spin-orbit coupling. They vary markedly with m and show numerous bands crossing the Fermi level, predicting a 3D-metallic behavior. Measurements of the electrical resistivity of a polycrystalline sample of Bi14I4 as well as polycrystalline and single-crystalline samples of Bi18I4 confirmed their metallic nature over the temperature range 300 K to 2 K. For Bi18I4, a positive and strictly linear magnetoresistance at 2 K in static magnetic fields up to 14 T was observed, which could indicate a topologically nontrivial electronic state.