Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zahnert, Thomas

  • Google
  • 1
  • 9
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Structural relationship between calcite-gelatine composites and biogenic (Human) otoconia24citations

Places of action

Chart of shared publication
Carrillo-Cabrera, Wilder
1 / 9 shared
Yarin, Yuri
1 / 1 shared
Borrmann, Horst
1 / 5 shared
Buder, Jana
1 / 3 shared
Simon, Paul
1 / 15 shared
Cardoso-Gil, Raul
1 / 5 shared
Kniep, Rüdiger
1 / 5 shared
Huang, Ya Xi
1 / 1 shared
Rosseeva, Elena
1 / 2 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Carrillo-Cabrera, Wilder
  • Yarin, Yuri
  • Borrmann, Horst
  • Buder, Jana
  • Simon, Paul
  • Cardoso-Gil, Raul
  • Kniep, Rüdiger
  • Huang, Ya Xi
  • Rosseeva, Elena
OrganizationsLocationPeople

article

Structural relationship between calcite-gelatine composites and biogenic (Human) otoconia

  • Carrillo-Cabrera, Wilder
  • Yarin, Yuri
  • Borrmann, Horst
  • Buder, Jana
  • Simon, Paul
  • Cardoso-Gil, Raul
  • Kniep, Rüdiger
  • Huang, Ya Xi
  • Rosseeva, Elena
  • Zahnert, Thomas
Abstract

<p>Biogenic otoconia (ear dust) are composite materials of calcite with about 2 wt.-% proteins showing an average longitudinal size of about 10 μm. The tiny biomineral particles are situated in the inner ear (in the maculae) and act as sensors for gravity and linear acceleration. Our comparative study of calcite-gelatine composites (grown by double diffusion) and human otoconia is based on decalcification experiments, scanning electron microscopy, TEM and X-ray investigations in order to obtain a complete picture of the 3D structure and morphogenesis of the materials. Otoconia as calcite-protein composites display a cylindrical body with terminal rhombohedral faces intersecting at the pointed ends. As evidenced by TEM on focused ion beam cuts, both the artificial composites and human otoconia show a particular distribution of areas with different volume densities leading to a dumbbell-shape of the more dense parts consisting of rhombohedral branches (with end faces) and a less ordered, less dense area (the belly region). The peculiar inner architecture of otoconia with its dumbbell-shaped mass/density distribution is assumed to be necessary for optimal sensing of linear accelerations.</p>

Topics
  • density
  • impedance spectroscopy
  • scanning electron microscopy
  • experiment
  • laser emission spectroscopy
  • composite
  • focused ion beam
  • transmission electron microscopy