People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hatanpää, Timo Tapio
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 20243D-printed sensor electric circuits using atomic layer depositioncitations
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2021Highly conductive and stable Co9S8 thin films by atomic layer depositioncitations
- 2019Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and watercitations
- 2019Crystalline tungsten sulfide thin films by atomic layer deposition and mild annealingcitations
- 2019Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl2(TMPDA) and Tert‐Butylhydrazine as Precursorscitations
- 2019Nickel Germanide Thin Films by Atomic Layer Depositioncitations
- 2019Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)(2)(THF) and H2Ocitations
- 2019Atomic Layer Deposition of Intermetallic Co3Sn2 and Ni3Sn2 Thin Filmscitations
- 2019Atomic Layer Deposition of PbI₂ Thin Filmscitations
- 2018Diamine Adduct of Cobalt(II) Chloride as a Precursor for Atomic Layer Deposition of Stoichiometric Cobalt(II) Oxide and Reduction Thereof to Cobalt Metal Thin Filmscitations
- 2017Thermal Atomic Layer Deposition of Continuous and Highly Conducting Gold Thin Filmscitations
- 2017Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and watercitations
- 2017Atomic Layer Deposition of Crystalline MoS2 Thin Filmscitations
- 2017Studies on Thermal Atomic Layer Deposition of Silver Thin Filmscitations
- 2016Potential gold(I) precursors evaluated for atomic layer depositioncitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2016Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layerscitations
- 2014Metal oxide films
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
- 2011Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperaturescitations
- 2011Atomic Layer Deposition of GeTe
- 2011Crystal structures and thermal properties of some rare earth alkoxides with tertiary alcoholscitations
- 2009Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and seleniumcitations
- 2009Alkylsilyl compounds of selenium and tellurium
- 2007Study of a novel ALD process for depositing MgF2 thin filmscitations
- 2007Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylatescitations
Places of action
Organizations | Location | People |
---|
article
Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates
Abstract
Metallic silver films are deposited by radical-enhanced atomic layer deposition (REALD) using (2,2-dimethylpropionato)silver(I)triethylphosphine and hydrogen radicals. The silver precursor used is synthesized in-house, and characterized using CHN elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance (NMR), mass spectrometry (MS), and then mogravimetric analysis/single differential thermal analysis (TGA/SDTA). The crystal structure of Ag(O2C'Bu)(PEt3) is also solved. Trimeric units are revealed as the building blocks. The hydrogen radicals are produced by dissociating molecular hydrogen with a microwave plasma discharge. The evaporation temperature of the silver precursor is 125 degrees C, and the film deposition temperature is 140 degrees C. The deposition is successful on glass and silicon, and the films are conformal. The saturated growth rate is 0.12 nm per cycle, with a 3 s silver precursor pulse and 5 s hydrogen radical pulse time. The overall cycle time is 14 s. The films are polycrystalline and are visually mirror-like. The films contain 10 at.-% oxygen, 4.0 at.-% phosphorous, 1.0 at.-% carbon, and 5.0 at.-% hydrogen as impurities. Nevertheless, the films exhibit low resistivity, only 6 mu Omega cm for a 40 nm thick film.