Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Veziroglu, Salih

  • Google
  • 11
  • 46
  • 289

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024ITO-TiO2 Heterojunctions on Glass Substrates for Photocatalytic Gold Growth Along Pattern Edgescitations
  • 2024Self‐Modification of Defective TiO<sub>2</sub> under Controlled H<sub>2</sub>/Ar Gas Environment and Dynamics of Photoinduced Surface Oxygen Vacancies2citations
  • 2024Antibacterial properties of marine algae incorporated polylactide acid membranes as an alternative to clinically applied different collagen membranes4citations
  • 2021Tuning wettability of TiO 2 thin film by photocatalytic deposition of 3D flower- and hedgehog-like Au nano- and microstructures21citations
  • 2021Selective Laser Melting of 316L Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation60citations
  • 2021Initiated chemical vapor deposition (Icvd) functionalized polylactic acid–marine algae composite patch for bone tissue engineering18citations
  • 2021Initiated chemical vapor deposition (Icvd) functionalized polylactic acid–marine algae composite patch for bone tissue engineering18citations
  • 2021Tuning wettability of TiO2 thin film by photocatalytic deposition of 3D flower- and hedgehog-like Au nano- and microstructures21citations
  • 2021Marine algae incorporated polylactide acid patch6citations
  • 2021Selective laser melting of 316L austenitic stainless steel:detailed process understanding using multiphysics simulation and experimentation60citations
  • 2019Pathways to Tailor Photocatalytic Performance of TiO2 Thin Films Deposited by Reactive Magnetron Sputtering79citations

Places of action

Chart of shared publication
Abshari, Fatemeh
1 / 1 shared
Vahl, Alexander
2 / 14 shared
Gerken, Martina
1 / 4 shared
Paulsen, Moritz
1 / 1 shared
Schürmann, Ulrich
1 / 12 shared
Voß, Lennart
1 / 1 shared
Faupel, Franz
7 / 46 shared
Kienle, Lorenz
1 / 52 shared
Aktas, Assoc. Prof. Dr. O. Cenk
1 / 1 shared
Shondo, Josiah N.
1 / 1 shared
Elis, Marie
1 / 3 shared
Tjardts, Tim
1 / 2 shared
Okudan, Emine Şükran
1 / 1 shared
Spille, Johannes
1 / 1 shared
Aktas, Oral Cenk
9 / 9 shared
Saygili, Eyüp Ilker
1 / 1 shared
Hajjami, Soumaya El
1 / 1 shared
Acil, Yahya
1 / 1 shared
Sayin, Selin
4 / 4 shared
Weitkamp, Jan-Tobias
1 / 2 shared
Flörke, Christian
1 / 1 shared
Behrendt, Peter
1 / 3 shared
Wiltfang, Jörg
4 / 4 shared
Gülses, Aydin
4 / 4 shared
Mishra, Yogendra Kumar
4 / 53 shared
Strunskus, Thomas
3 / 33 shared
Stefan, Dominik
2 / 2 shared
Shondo, Josiah
2 / 2 shared
Pitir, Fatih
2 / 2 shared
Rehman, Asif Ur
2 / 5 shared
Ansari, Peyman
2 / 2 shared
Salamci, Metin U.
1 / 4 shared
Schröder, Stefan
2 / 6 shared
Reichstein, Wiebke
2 / 2 shared
Açil, Yahya
3 / 3 shared
Saygili, Eyüp İlker
3 / 3 shared
Sommer, Levke
2 / 2 shared
Karayürek, Fatih
3 / 3 shared
Mishra, Prof. Yogendra Kumar
3 / 41 shared
Fiutowski, Jacek
1 / 27 shared
Naujokat, Hendrik
1 / 1 shared
Kohlhaas, Theresa
1 / 1 shared
Ayna, Mustafa
1 / 1 shared
Metin, U. Salamci
1 / 1 shared
Polonskyi, Oleksandr
1 / 16 shared
Henkel, Bodo
1 / 1 shared
Chart of publication period
2024
2021
2019

Co-Authors (by relevance)

  • Abshari, Fatemeh
  • Vahl, Alexander
  • Gerken, Martina
  • Paulsen, Moritz
  • Schürmann, Ulrich
  • Voß, Lennart
  • Faupel, Franz
  • Kienle, Lorenz
  • Aktas, Assoc. Prof. Dr. O. Cenk
  • Shondo, Josiah N.
  • Elis, Marie
  • Tjardts, Tim
  • Okudan, Emine Şükran
  • Spille, Johannes
  • Aktas, Oral Cenk
  • Saygili, Eyüp Ilker
  • Hajjami, Soumaya El
  • Acil, Yahya
  • Sayin, Selin
  • Weitkamp, Jan-Tobias
  • Flörke, Christian
  • Behrendt, Peter
  • Wiltfang, Jörg
  • Gülses, Aydin
  • Mishra, Yogendra Kumar
  • Strunskus, Thomas
  • Stefan, Dominik
  • Shondo, Josiah
  • Pitir, Fatih
  • Rehman, Asif Ur
  • Ansari, Peyman
  • Salamci, Metin U.
  • Schröder, Stefan
  • Reichstein, Wiebke
  • Açil, Yahya
  • Saygili, Eyüp İlker
  • Sommer, Levke
  • Karayürek, Fatih
  • Mishra, Prof. Yogendra Kumar
  • Fiutowski, Jacek
  • Naujokat, Hendrik
  • Kohlhaas, Theresa
  • Ayna, Mustafa
  • Metin, U. Salamci
  • Polonskyi, Oleksandr
  • Henkel, Bodo
OrganizationsLocationPeople

article

Self‐Modification of Defective TiO<sub>2</sub> under Controlled H<sub>2</sub>/Ar Gas Environment and Dynamics of Photoinduced Surface Oxygen Vacancies

  • Schürmann, Ulrich
  • Voß, Lennart
  • Faupel, Franz
  • Kienle, Lorenz
  • Aktas, Assoc. Prof. Dr. O. Cenk
  • Shondo, Josiah N.
  • Elis, Marie
  • Tjardts, Tim
  • Veziroglu, Salih
Abstract

<jats:title>Abstract</jats:title><jats:p>In recent years, defective TiO<jats:sub>2</jats:sub> has caught considerable research attention because of its potential to overcome the limits of low visible light absorption and fast charge recombination present in pristine TiO<jats:sub>2</jats:sub> photocatalysts. Among the different synthesis conditions for defective TiO<jats:sub>2</jats:sub>, ambient pressure hydrogenation with the addition of Ar as inert gas for safety purposes has been established as an easy method to realize the process. Whether the Ar gas might still influence the resulting photocatalytic properties and defective surface layer remains an open question. Here, we reveal that the gas flow ratio between H<jats:sub>2</jats:sub> and Ar has a crucial impact on the defective structure as well as the photocatalyic activity of TiO<jats:sub>2</jats:sub>. In particular, transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS) revealed a larger width of the defective surface layer when using a H<jats:sub>2</jats:sub>/Ar (50 %–50 %) gas mixture over pure H<jats:sub>2</jats:sub>. A possible reason could be the increase in dynamic viscosity of the gas mixture when Ar is added. Additionally, photoinduced enhanced Raman spectroscopy (PIERS) is implemented as a complementary approach to investigate the dynamics of the defective structures under ambient conditions which cannot be effortlessly realized by vacuum techniques like TEM.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Oxygen
  • transmission electron microscopy
  • Raman spectroscopy
  • electron energy loss spectroscopy
  • dynamic viscosity