People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marangon, Vittorio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Effective Liquid Electrolytes for Enabling Room‐Temperature Sodium–Sulfur Batteriescitations
- 2024Scalable Li‐Ion Battery with Metal/Metal Oxide Sulfur Cathode and Lithiated Silicon Oxide/Carbon Anode
- 2024A lithium-ion battery with cycling stability promoted by the progressive activation of a silicon oxide anode in graphene-amorphous carbon matrixcitations
- 2023Reciprocal irreversibility compensation of LiNi0.2Co0.2Al0.1Mn0.45O2 cathode and silicon oxide anode in new Li-ion batterycitations
- 2023Current collectors based on multiwalled carbon-nanotubes and few-layer graphene for enhancing the conversion process in scalable lithium-sulfur batterycitations
- 2023Diffusional Features of a Lithium-Sulfur Battery Exploiting Highly Microporous Activated Carboncitations
- 2023Diffusional Features of a Lithium‐Sulfur Battery Exploiting Highly Microporous Activated Carboncitations
- 2023Influence of Ion Diffusion on the Lithium-Oxygen Electrochemical Process and Battery Application Using Carbon Nanotubes-Graphene Substratecitations
- 2022Next Generation Energy Storage Systems based on Sulfur
- 2022Scalable Composites Benefiting from Transition‐Metal Oxides as Cathode Materials for Efficient Lithium‐Sulfur Batteriescitations
- 2017A New CuO-Fe2 O3 -Mesocarbon Microbeads Conversion Anode in a High-Performance Lithium-Ion Battery with a Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 Spinel Cathodecitations
Places of action
Organizations | Location | People |
---|
article
Diffusional Features of a Lithium‐Sulfur Battery Exploiting Highly Microporous Activated Carbon
Abstract
<jats:title>Abstract</jats:title><jats:p>Diffusion processes at the electrode/electrolyte interphase drives the performance of lithium‐sulfur batteries, and activated carbon (AC) can remarkably vehicle ions and polysulfide species throughout the two‐side liquid/solid region of the interphase. We reveal original findings such as the values of the diffusion coefficient at various states of charge of a Li−S battery using a highly porous AC, its notable dependence on the adopted techniques, and the correlation of the diffusion trend with the reaction mechanism. X‐ray photoelectron spectroscopy (XPS) and X‐ray energy dispersive spectroscopy (EDS) are used to identify in the carbon derived from bioresidues heteroatoms such as N, S, O and P, which can increase the polarity of the C framework. The transport properties are measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). The study reveals Li<jats:sup>+</jats:sup>‐diffusion coefficient (<jats:italic>D</jats:italic><jats:sub>Li</jats:sub><jats:sup>+</jats:sup>) depending on the technique, and values correlated with the cell state of charge. EIS, CV, and GITT yield a <jats:italic>D</jats:italic><jats:sub>Li</jats:sub><jats:sup>+</jats:sup> within 10<jats:sup>−7</jats:sup>–10<jats:sup>−8</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>, 10<jats:sup>−8</jats:sup>–10<jats:sup>−9</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>, and 10<jats:sup>−6</jats:sup>–10<jats:sup>−12</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>, respectively, dropping down at the fully discharged state and increasing upon charge. GITT allows the evaluation of <jats:italic>D</jats:italic><jats:sub>Li</jats:sub><jats:sup>+</jats:sup> during the process and evidences the formation of low‐conducting media upon discharge. The sulfur composite delivers in a Li‐cell a specific capacity ranging from 1300 mAh g<jats:sup>−1</jats:sup> at 0.1 C to 700 mAh g<jats:sup>−1</jats:sup> at 2C with a S loading of 2 mg cm<jats:sup>−2</jats:sup>, and from 1000 to 800 mAh g<jats:sup>−1</jats:sup> at 0.2C when the S loading is raised to 6 mg cm<jats:sup>−2</jats:sup>.</jats:p>