Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Amores, Álvaro Caballero

  • Google
  • 2
  • 6
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Diffusional Features of a Lithium‐Sulfur Battery Exploiting Highly Microporous Activated Carbon24citations
  • 2021Biomass Porous Carbons Derived from Banana Peel Waste as Sustainable Anodes for Lithium-Ion Batteries33citations

Places of action

Chart of shared publication
Marangon, Vittorio
1 / 11 shared
Lama, Fernando Luna
1 / 2 shared
Morales Palomino, Julián
1 / 1 shared
Hassoun, Jusef
1 / 56 shared
Luna-Lama, Fernando
1 / 2 shared
Morales, Julián
1 / 4 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Marangon, Vittorio
  • Lama, Fernando Luna
  • Morales Palomino, Julián
  • Hassoun, Jusef
  • Luna-Lama, Fernando
  • Morales, Julián
OrganizationsLocationPeople

article

Diffusional Features of a Lithium‐Sulfur Battery Exploiting Highly Microporous Activated Carbon

  • Amores, Álvaro Caballero
  • Marangon, Vittorio
  • Lama, Fernando Luna
  • Morales Palomino, Julián
  • Hassoun, Jusef
Abstract

<jats:title>Abstract</jats:title><jats:p>Diffusion processes at the electrode/electrolyte interphase drives the performance of lithium‐sulfur batteries, and activated carbon (AC) can remarkably vehicle ions and polysulfide species throughout the two‐side liquid/solid region of the interphase. We reveal original findings such as the values of the diffusion coefficient at various states of charge of a Li−S battery using a highly porous AC, its notable dependence on the adopted techniques, and the correlation of the diffusion trend with the reaction mechanism. X‐ray photoelectron spectroscopy (XPS) and X‐ray energy dispersive spectroscopy (EDS) are used to identify in the carbon derived from bioresidues heteroatoms such as N, S, O and P, which can increase the polarity of the C framework. The transport properties are measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). The study reveals Li<jats:sup>+</jats:sup>‐diffusion coefficient (<jats:italic>D</jats:italic><jats:sub>Li</jats:sub><jats:sup>+</jats:sup>) depending on the technique, and values correlated with the cell state of charge. EIS, CV, and GITT yield a <jats:italic>D</jats:italic><jats:sub>Li</jats:sub><jats:sup>+</jats:sup> within 10<jats:sup>−7</jats:sup>–10<jats:sup>−8</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>, 10<jats:sup>−8</jats:sup>–10<jats:sup>−9</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>, and 10<jats:sup>−6</jats:sup>–10<jats:sup>−12</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>, respectively, dropping down at the fully discharged state and increasing upon charge. GITT allows the evaluation of <jats:italic>D</jats:italic><jats:sub>Li</jats:sub><jats:sup>+</jats:sup> during the process and evidences the formation of low‐conducting media upon discharge. The sulfur composite delivers in a Li‐cell a specific capacity ranging from 1300 mAh g<jats:sup>−1</jats:sup> at 0.1 C to 700 mAh g<jats:sup>−1</jats:sup> at 2C with a S loading of 2 mg cm<jats:sup>−2</jats:sup>, and from 1000 to 800 mAh g<jats:sup>−1</jats:sup> at 0.2C when the S loading is raised to 6 mg cm<jats:sup>−2</jats:sup>.</jats:p>

Topics
  • porous
  • Carbon
  • x-ray photoelectron spectroscopy
  • composite
  • Lithium
  • electrochemical-induced impedance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • cyclic voltammetry
  • titration