People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Penttilä, Paavo A.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrilscitations
- 2022Effect of Moisture on Polymer Deconstruction in HCl Gas Hydrolysis of Woodcitations
- 2021Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Lignins : A Comparison Studycitations
- 2021Deswelling of microfibril bundles in drying wood studied by small-angle neutron scattering and molecular dynamicscitations
- 2021Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Ligninscitations
- 2021Water-accessibility of interfibrillar spaces in spruce wood cell wallscitations
- 2020Observing microfibril bundles in wood by small-angle neutron scattering
- 2020Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scatteringcitations
- 2020Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scatteringcitations
- 2020Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scatteringcitations
- 2019Small-angle scattering model for efficient characterization of wood nanostructure and moisture behaviourcitations
- 2013Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysiscitations
Places of action
Organizations | Location | People |
---|
article
Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Lignins
Abstract
<p>The production of lignin nanoparticles (LNPs) has emerged as a way to overcome the highly variable and complex molecular structure of lignin. It can offer morphological control of the lignin polymer, allowing the formation of stable LNP dispersions in aqueous media, while increasing the potential of lignin for high-value applications. However, the polydispersity and morphology of LNPs varies depending on the lignin grade and preparation method, and a systematic comparison using different technical lignins is lacking. In this study, it was attempted to find a green fabrication method with a distinct solvent fractionation of lignin to prepare LNPs using three different technical lignins as starting polymers: BLN birch lignin (hardwood, BB), alkali Protobind 1000 (grass, PB), and kraft LignoBoost (softwood, LB). For that, three anti-solvent precipitation approaches to prepare LNPs were systematically compared: 70 % aqueous ethanol, acetone/water (3 : 1) and NaOH as the lignin solvent, and water/aqueous HCl as the anti-solvent. Among all these methods, the acetone/water (3 : 1) approach allowed production of homogeneous and monodisperse LNPs with a negative surface charge and also spherical and smooth surfaces. Overall, the results revealed that the acetone/water (3 : 1) method was the most effective approach tested to obtain homogenous, small, and spherical LNPs from the three technical lignins. These LNPs exhibited an improved stability at different ionic strengths and a wider pH range compared to the other preparation methods, which can greatly increase their application in many fields, such as pharmaceutical and food sciences.</p>