People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maibach, Julia
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023From high‐pressure $β‐V_2O_5$ to $κ‐Na_xV_2O_5$ ( x = 0.4 − 0.55): A structural, chemical, and kinetic insight into a sodiated phase with a large interlayer spacecitations
- 2023Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium‐Ion Batteriescitations
- 2021Polyoxometalate Modified Separator for Performance Enhancement of Magnesium–Sulfur Batteriescitations
- 2021A self‐conditioned metalloporphyrin as a highly stable cathode for fast rechargeable magnesium batteries
- 2021A Self‐Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteriescitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2020Multi‐electron reactions enabled by anion‐based redox chemistry for high‐energy multivalent rechargeable batteries
- 2018Dendrite-free lithium electrode cycling via controlled nucleation in low LiPF6 concentration electrolytescitations
Places of action
Organizations | Location | People |
---|
article
A Self‐Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries
Abstract
<jats:title>Abstract</jats:title><jats:p>Development of practical rechargeable Mg batteries (RMBs) is impeded by their limited cycle life and rate performance of cathodes. As demonstrated herein, a copper‐porphyrin with meso‐functionalized ethynyl groups is capable of reversible two‐ and four‐electron storage at an extremely fast rate (tested up to 53 C). The reversible four‐electron redox process with cationic‐anionic contributions resulted in a specific discharge capacity of 155 mAh g<jats:sup>−1</jats:sup> at the high current density of 1000 mA g<jats:sup>−1</jats:sup>. Even at 4000 mA g<jats:sup>−1</jats:sup>, it still delivered >70 mAh g<jats:sup>−1</jats:sup> after 500 cycles, corresponding to an energy density of >92 Wh kg<jats:sup>−1</jats:sup> at a high power of >5100 W kg<jats:sup>−1</jats:sup>. The ability to provide such high‐rate performance and long‐life opens the way to the development of practical cathodes for multivalent metal batteries.</jats:p>