Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sun, Yangkook

  • Google
  • 2
  • 12
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018A 4 V Li‐Ion Battery using All‐Spinel‐Based Electrodes11citations
  • 2014A Physical Pulverization Strategy for Preparing a Highly Active Composite of CoO<sub><i>x</i></sub> and Crushed Graphite for Lithium–Oxygen Batteries10citations

Places of action

Chart of shared publication
Jeong, Mingi
1 / 2 shared
Jung, Hun-Gi
1 / 1 shared
Ali, Ghulam
1 / 2 shared
Oh, Inhwan
1 / 1 shared
Islam, Mobinul
1 / 2 shared
Chung, Kyung Yoon
1 / 1 shared
Curtiss, Larry
1 / 3 shared
Kwak, Wonjin
1 / 1 shared
Park, Jinbum
1 / 1 shared
Shin, Changdae
1 / 1 shared
Lu, Jun
1 / 78 shared
Amine, Khalil
1 / 4 shared
Chart of publication period
2018
2014

Co-Authors (by relevance)

  • Jeong, Mingi
  • Jung, Hun-Gi
  • Ali, Ghulam
  • Oh, Inhwan
  • Islam, Mobinul
  • Chung, Kyung Yoon
  • Curtiss, Larry
  • Kwak, Wonjin
  • Park, Jinbum
  • Shin, Changdae
  • Lu, Jun
  • Amine, Khalil
OrganizationsLocationPeople

article

A 4 V Li‐Ion Battery using All‐Spinel‐Based Electrodes

  • Jeong, Mingi
  • Jung, Hun-Gi
  • Ali, Ghulam
  • Sun, Yangkook
  • Oh, Inhwan
  • Islam, Mobinul
  • Chung, Kyung Yoon
Abstract

<jats:title>Abstract</jats:title><jats:p>Boosting the performance of rechargeable lithium‐ion batteries (LIBs) beyond the state‐of‐the‐art is mandatory toward meeting the future energy requirements of the consumer mass market. The replacement of conventional graphite anodes with conversion‐type metal‐oxide anodes is one progressive approach toward achieving this goal. Here, a LIB consisting of a highcapacity spinel NiMn<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> anode and a high‐voltage spinel LiNi<jats:sub>0.5</jats:sub>Mn<jats:sub>1.5</jats:sub>O<jats:sub>4</jats:sub> cathode was proposed. Polyhedral‐shaped NiMn<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> powder was prepared from a citrate precursor via the sol‐gel method. Electrochemical tests showed that the NiMn<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> in a half‐cell configuration could deliver reversible capacities of 750 and 303 mAh g<jats:sup>−1</jats:sup> at 0.1 and 3 C rates. Integrating the NiMn<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> anode into a full‐cell configuration provided an estimated energy density of 506 Wh kg<jats:sup>−1</jats:sup> (vs. cathode mass) upon 100 cycles and excellent cycling performance over 150 cycles at the 0.1 C rate, which can be considered promising in terms of satisfying the demands for high energy densities in large‐scale applications.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • Lithium