Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thamotharan, Keerthivasan

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Exploring mc‐Silicon Wafers: Utilizing Machine Learning to Enhance Wafer Quality Through Etching Studiescitations

Places of action

Chart of shared publication
Suseela, Sreeja Balakrishnapillai
1 / 1 shared
Manikkam, Srinivasan
1 / 1 shared
Raji, Madhesh
1 / 1 shared
Kutsukake, Kentaro
1 / 2 shared
Rajavel, Ramadoss
1 / 1 shared
Usami, Noritaka
1 / 4 shared
Anbazhagan, Gowthami
1 / 1 shared
Perumalsamy, Ramasamy
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Suseela, Sreeja Balakrishnapillai
  • Manikkam, Srinivasan
  • Raji, Madhesh
  • Kutsukake, Kentaro
  • Rajavel, Ramadoss
  • Usami, Noritaka
  • Anbazhagan, Gowthami
  • Perumalsamy, Ramasamy
OrganizationsLocationPeople

article

Exploring mc‐Silicon Wafers: Utilizing Machine Learning to Enhance Wafer Quality Through Etching Studies

  • Suseela, Sreeja Balakrishnapillai
  • Manikkam, Srinivasan
  • Raji, Madhesh
  • Thamotharan, Keerthivasan
  • Kutsukake, Kentaro
  • Rajavel, Ramadoss
  • Usami, Noritaka
  • Anbazhagan, Gowthami
  • Perumalsamy, Ramasamy
Abstract

<jats:title>Abstract</jats:title><jats:p>This paper provides a method for improving the photovoltaic conversion efficiency and optical attributes of silicon solar cells manufactured from as‐cut boron doped p‐type multi‐crystalline silicon wafers using acid‐based chemical texturization via machine learning. A decreased reflectance, which can be attained by the right chemical etching conditions, is one of the key elements for raising solar cell efficiency. In this work, the mc‐Silicon wafer surface reflectance is obtained under (&lt;2%) after optimization of wet chemical etching. The HF + HNO<jats:sub>3</jats:sub> + CH<jats:sub>3</jats:sub>COOH chemical etchant is used in the ratio 1:3:2 at different conditions of the etching duration of 1 min, 2 min, 3 min, and 4 min, respectively. The as‐cut boron doped p‐type mc‐silicon wafers are analysed with ultraviolet–visible spectroscopy, optical microscopy, Fourier transforms infrared spectroscopy, thickness profilometer, and scanning electron microscopy before and after etching. The chemical etching solution produces good results in 3 min etched wafer, with a reflectivity value of &lt;2%.The reflectivity and optical images are inputs to the convolutional neural network model and the linear regression model to obtain the etching rate for better reflectivity. The classification model provides 99.6% accuracy and the regression model results in the minimum mean squared error (MSE) of 0.062.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • Silicon
  • etching
  • Boron
  • optical microscopy
  • Ultraviolet–visible spectroscopy
  • machine learning
  • infrared spectroscopy