People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hennen, Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomers
Abstract
<p>Herein, we demonstrated the synthesis of multifunctional alkyne building blocks from commercially available acrylate monomers exploiting the carbon and oxa Michael addition reaction. These compounds were obtained in decent yields and show similar or even higher photoreactivity than the initial acrylates. Importantly, selected thiol-yne formulations can be processed by stereolithography and significantly outperform the corresponding acrylate in terms of modulus and toughness. The high compatibility of such cured materials with osteosarcoma cells makes these photopolymers interesting for hard tissue engineering.</p>