People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wiener, Johannes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Investigation of background noise affecting AE data acquisition during tensile loading of FRPs
- 2023Determination of creep crack growth kinetics of ABS via the C* approach at different temperaturescitations
- 2023Concepts towards bio-inspired multilayered polymer-compositescitations
- 2023Comparing crack density and dissipated energy as measures for off-axis damage in composite laminatescitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Influence of layer architecture on fracture toughness and specimen stiffness in polymer multilayer compositescitations
- 2021Optimization of Mechanical Properties and Damage Tolerance in Polymer-Mineral Multilayer Compositescitations
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomerscitations
- 2019Application of the material inhomogeneity effect for the improvement of fracture toughness of a brittle polymercitations
- 2019Erhöhung der Bruchzähigkeit durch Multischichtaufbau
- 2019Bioinspired toughness improvement through soft interlayers in mineral reinforced polypropylenecitations
Places of action
Organizations | Location | People |
---|
article
Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomers
Abstract
<p>Herein, we demonstrated the synthesis of multifunctional alkyne building blocks from commercially available acrylate monomers exploiting the carbon and oxa Michael addition reaction. These compounds were obtained in decent yields and show similar or even higher photoreactivity than the initial acrylates. Importantly, selected thiol-yne formulations can be processed by stereolithography and significantly outperform the corresponding acrylate in terms of modulus and toughness. The high compatibility of such cured materials with osteosarcoma cells makes these photopolymers interesting for hard tissue engineering.</p>