People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Randles, Michael D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2016Mixed-metal cluster chemistry. 37. Syntheses, structural, spectroscopic, electrochemical, and optical power limiting studies of tetranuclear molybdenum-iridium clusters Dedicated to Professor Jack Lewis, a cluster chemist par excellence.citations
- 2015Syntheses, Electrochemical, Linear Optical, and Cubic Nonlinear Optical Properties of Ruthenium-Alkynyl-Functionalized Oligo(phenylenevinylene) Starscitations
- 2015Phosphine, isocyanide, and alkyne reactivity at pentanuclear molybdenum/tungsten-iridium clusterscitations
Places of action
Organizations | Location | People |
---|
article
Syntheses, Electrochemical, Linear Optical, and Cubic Nonlinear Optical Properties of Ruthenium-Alkynyl-Functionalized Oligo(phenylenevinylene) Stars
Abstract
<p>The syntheses of trans-[Ru(C≡CC<sub>6</sub>H<sub>4</sub>-4-CHO)(C≡CC<sub>6</sub>H<sub>4</sub>-4-R)(dppe)<sub>2</sub>] (R=H (9a), NO<sub>2</sub> (9b), CHO (9c), C≡CC<sub>6</sub>H<sub>3</sub>-3,5-Et<sub>2</sub> (9d), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu (9e); dppe=1,2-bis(diphenylphosphino)ethane), trans-[Ru(C≡CC<sub>6</sub>H<sub>4</sub>-4-R)Cl(dppe)<sub>2</sub>] (R=C≡CC<sub>6</sub>H<sub>3</sub>-3,5-Et<sub>2</sub> (11a), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu (11b), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-NO<sub>2</sub> (11c)), 1,2,4,5-{trans-[(dppe)<sub>2</sub>(RC<sub>6</sub>H<sub>4</sub>C≡C)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>4</sub>C<sub>6</sub>H<sub>2</sub> (R=H (14a), C≡CC<sub>6</sub>H<sub>3</sub>-3,5-Et<sub>2</sub> (14b), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu (14c)), 1-I-3,5-{trans-[(L<sub>2</sub>)<sub>2</sub>(R)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (L<sub>2</sub>=1,1-bis(diphenylphosphino)methane (dppm)), R=Cl (15a); L<sub>2</sub>=dppe, R=C≡CPh (15b), R=C≡CC<sub>6</sub>H<sub>4</sub>-4-NO<sub>2</sub> (15c)), 1-Me<sub>3</sub>SiC≡C-3,5-{trans-[(L<sub>2</sub>)<sub>2</sub>(R)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (L<sub>2</sub>=dppm, R=Cl (16a); L<sub>2</sub>=dppe, R=C≡CPh (16b)), 1-HC≡C-3,5-{trans-[(dppe)<sub>2</sub>(R)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (R=Cl (17a), R=C≡CPh (17b)), and 1,3,5-{trans-[(dppe)<sub>2</sub>(3,5-R<sub>2</sub>-C<sub>6</sub>H<sub>3</sub>C≡C)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>3</sub>C<sub>6</sub>H<sub>3</sub> (R=(E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-C≡C-trans-[Ru(C≡CPh)(dppe)<sub>2</sub>] (18)) are reported together with those of the precursor alkynes 1-RC≡C-3,5-Et<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (R=SiMe<sub>3</sub> (2), H (3), C<sub>6</sub>H<sub>4</sub>-4-C≡CSiMe<sub>3</sub> (5), C<sub>6</sub>H<sub>4</sub>-4-C≡CH (6)). The identities of 9c, 9d, 9e, 11a, and trans-[Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu}<sub>2</sub>(dppe)<sub>2</sub>] (12 and 12′) were confirmed by single-crystal X-ray diffraction studies. The electrochemical properties of 9a-e, 11a-b, 14a-c, 15a-c, 16b, 17a, 17b, and 18 were assessed by cyclic voltammetry; the studies reveal that potentials for the fully/quasi-reversible metal-centered oxidation processes decrease upon introduction of solubilizing alkyl substituents and increase upon increasing acceptor substituent strength; other structural variations have little impact. UV/Vis-NIR spectroscopic studies on these complexes reveal lowest-energy metal-ligand charge transfer (MLCT) bands that redshift upon increasing the acceptor substituent strength, blueshift on alkyl incorporation, and gain in intensity on progression from linear to star complexes. Low-temperature UV/Vis-NIR spectroelectrochemical studies of 14a-c show the appearance of an intense low-energy band at 7400-7900cm<sup>-1</sup> that is redshifted upon π-system lengthening and alkyl substituent incorporation. The cubic nonlinear optical properties of 9d, 9e, 14a-c, 15a-c, 16b, 17a,b, and 18 were assayed by femtosecond Z-scan studies at benchmark wavelengths (750 and 800nm) in the near-IR region, with nonlinearity increasing upon nitro incorporation; the values for the E-ene-linked dendrimers in these studies are much larger than yne-linked analogues. Compounds 9d, 9e, 14a-c, and 18 were further examined by broad-spectral-range femtosecond Z-scan studies; the cruciform complexes have appreciable multiphoton absorption cross-sections, with maximal values close to two and three times the wavelength of the linear optical absorption maxima. Super stars: (4-Formylphenylethynyl)ruthenium complexes (see figure) are shown to undergo "chemistry-on-complex" Horner-Wadsworth-Emmons coupling to afford a range of tri- and tetraruthenium-functionalized star molecules and a nonaruthenium dendrimer. The products are nonlinear optical (NLO)-active, with linear optical properties that are redox-switchable.</p>