Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Xinwei

  • Google
  • 1
  • 11
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Syntheses, Electrochemical, Linear Optical, and Cubic Nonlinear Optical Properties of Ruthenium-Alkynyl-Functionalized Oligo(phenylenevinylene) Stars7citations

Places of action

Chart of shared publication
Smith, Matthew K.
1 / 2 shared
Cifuentes, Marie P.
1 / 6 shared
Samoc, Marek
1 / 6 shared
Zhang, Chi
1 / 16 shared
Dalton, Gulliver T.
1 / 1 shared
Barlow, Adam
1 / 5 shared
Randles, Michael D.
1 / 3 shared
Jeffery, Christopher J.
1 / 1 shared
Moxey, Graeme J.
1 / 4 shared
Babgi, Bandar A.
1 / 2 shared
Chen, Zhiwei
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Smith, Matthew K.
  • Cifuentes, Marie P.
  • Samoc, Marek
  • Zhang, Chi
  • Dalton, Gulliver T.
  • Barlow, Adam
  • Randles, Michael D.
  • Jeffery, Christopher J.
  • Moxey, Graeme J.
  • Babgi, Bandar A.
  • Chen, Zhiwei
OrganizationsLocationPeople

article

Syntheses, Electrochemical, Linear Optical, and Cubic Nonlinear Optical Properties of Ruthenium-Alkynyl-Functionalized Oligo(phenylenevinylene) Stars

  • Smith, Matthew K.
  • Cifuentes, Marie P.
  • Samoc, Marek
  • Yang, Xinwei
  • Zhang, Chi
  • Dalton, Gulliver T.
  • Barlow, Adam
  • Randles, Michael D.
  • Jeffery, Christopher J.
  • Moxey, Graeme J.
  • Babgi, Bandar A.
  • Chen, Zhiwei
Abstract

<p>The syntheses of trans-[Ru(C≡CC<sub>6</sub>H<sub>4</sub>-4-CHO)(C≡CC<sub>6</sub>H<sub>4</sub>-4-R)(dppe)<sub>2</sub>] (R=H (9a), NO<sub>2</sub> (9b), CHO (9c), C≡CC<sub>6</sub>H<sub>3</sub>-3,5-Et<sub>2</sub> (9d), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu (9e); dppe=1,2-bis(diphenylphosphino)ethane), trans-[Ru(C≡CC<sub>6</sub>H<sub>4</sub>-4-R)Cl(dppe)<sub>2</sub>] (R=C≡CC<sub>6</sub>H<sub>3</sub>-3,5-Et<sub>2</sub> (11a), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu (11b), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-NO<sub>2</sub> (11c)), 1,2,4,5-{trans-[(dppe)<sub>2</sub>(RC<sub>6</sub>H<sub>4</sub>C≡C)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>4</sub>C<sub>6</sub>H<sub>2</sub> (R=H (14a), C≡CC<sub>6</sub>H<sub>3</sub>-3,5-Et<sub>2</sub> (14b), (E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu (14c)), 1-I-3,5-{trans-[(L<sub>2</sub>)<sub>2</sub>(R)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (L<sub>2</sub>=1,1-bis(diphenylphosphino)methane (dppm)), R=Cl (15a); L<sub>2</sub>=dppe, R=C≡CPh (15b), R=C≡CC<sub>6</sub>H<sub>4</sub>-4-NO<sub>2</sub> (15c)), 1-Me<sub>3</sub>SiC≡C-3,5-{trans-[(L<sub>2</sub>)<sub>2</sub>(R)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (L<sub>2</sub>=dppm, R=Cl (16a); L<sub>2</sub>=dppe, R=C≡CPh (16b)), 1-HC≡C-3,5-{trans-[(dppe)<sub>2</sub>(R)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (R=Cl (17a), R=C≡CPh (17b)), and 1,3,5-{trans-[(dppe)<sub>2</sub>(3,5-R<sub>2</sub>-C<sub>6</sub>H<sub>3</sub>C≡C)Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCH}]}<sub>3</sub>C<sub>6</sub>H<sub>3</sub> (R=(E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-C≡C-trans-[Ru(C≡CPh)(dppe)<sub>2</sub>] (18)) are reported together with those of the precursor alkynes 1-RC≡C-3,5-Et<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (R=SiMe<sub>3</sub> (2), H (3), C<sub>6</sub>H<sub>4</sub>-4-C≡CSiMe<sub>3</sub> (5), C<sub>6</sub>H<sub>4</sub>-4-C≡CH (6)). The identities of 9c, 9d, 9e, 11a, and trans-[Ru{C≡CC<sub>6</sub>H<sub>4</sub>-4-(E)-CHCHC<sub>6</sub>H<sub>4</sub>-4-tBu}<sub>2</sub>(dppe)<sub>2</sub>] (12 and 12′) were confirmed by single-crystal X-ray diffraction studies. The electrochemical properties of 9a-e, 11a-b, 14a-c, 15a-c, 16b, 17a, 17b, and 18 were assessed by cyclic voltammetry; the studies reveal that potentials for the fully/quasi-reversible metal-centered oxidation processes decrease upon introduction of solubilizing alkyl substituents and increase upon increasing acceptor substituent strength; other structural variations have little impact. UV/Vis-NIR spectroscopic studies on these complexes reveal lowest-energy metal-ligand charge transfer (MLCT) bands that redshift upon increasing the acceptor substituent strength, blueshift on alkyl incorporation, and gain in intensity on progression from linear to star complexes. Low-temperature UV/Vis-NIR spectroelectrochemical studies of 14a-c show the appearance of an intense low-energy band at 7400-7900cm<sup>-1</sup> that is redshifted upon π-system lengthening and alkyl substituent incorporation. The cubic nonlinear optical properties of 9d, 9e, 14a-c, 15a-c, 16b, 17a,b, and 18 were assayed by femtosecond Z-scan studies at benchmark wavelengths (750 and 800nm) in the near-IR region, with nonlinearity increasing upon nitro incorporation; the values for the E-ene-linked dendrimers in these studies are much larger than yne-linked analogues. Compounds 9d, 9e, 14a-c, and 18 were further examined by broad-spectral-range femtosecond Z-scan studies; the cruciform complexes have appreciable multiphoton absorption cross-sections, with maximal values close to two and three times the wavelength of the linear optical absorption maxima. Super stars: (4-Formylphenylethynyl)ruthenium complexes (see figure) are shown to undergo "chemistry-on-complex" Horner-Wadsworth-Emmons coupling to afford a range of tri- and tetraruthenium-functionalized star molecules and a nonaruthenium dendrimer. The products are nonlinear optical (NLO)-active, with linear optical properties that are redox-switchable.</p>

Topics
  • impedance spectroscopy
  • compound
  • x-ray diffraction
  • strength
  • cyclic voltammetry
  • dendrimer
  • alkyne
  • Ruthenium