Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paolella, Andrea

  • Google
  • 8
  • 35
  • 161

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries9citations
  • 2024Influence of 3D structural design on the electrochemical performances of Aluminum metal as anode for Li‐ion batteries2citations
  • 2023Biomass-derived carbon–silicon composites (C@Si) as anodes for lithium-ion and sodium-ion batteries: A promising strategy towards long-term cycling stability: A mini reviewcitations
  • 2023Biomass-derived carbon–silicon composites (C@Si) as anodes for lithium-ion and sodium-ion batteries:A promising strategy towards long-term cycling stability: A mini review25citations
  • 2020Direct observation of lithium metal dendrites with ceramic solid electrolyte67citations
  • 2020Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> Electrolyte29citations
  • 2020Toward an All-Ceramic Cathode-Electrolyte Interface with Low-Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolyte29citations
  • 2020Electrospun Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> Nanofibers to Develop Solid-State Electrolytes for Lithium Metal Batteriescitations

Places of action

Chart of shared publication
Ramteke, D. D.
1 / 2 shared
Sliz, Rafal
1 / 2 shared
Välikangas, Juho
1 / 2 shared
Hu, Tao
1 / 4 shared
Fabritius, Tapio
1 / 5 shared
Molaiyan, Palanivel
4 / 5 shared
Lassi, Ulla
3 / 13 shared
Krammer, Martin
1 / 1 shared
Proietti, Remo
1 / 1 shared
Marras, Sergio
1 / 15 shared
Ricci, Marco
1 / 3 shared
Pequeno De Oliveira, Helinando
1 / 1 shared
Garcia-Alvarado, Flaviano
1 / 1 shared
Subramaniyam, Chandrasekar M.
2 / 2 shared
Simões Dos Reis, Glaydson
1 / 5 shared
De Oliveira, Helinando Pequeno
1 / 3 shared
Dos Reis, Glaydson Simoes
1 / 1 shared
García-Alvarado, Flaviano
1 / 6 shared
Zaghib, Karim
4 / 10 shared
Delaporte, Nicolas
3 / 3 shared
Guerfi, Abdelbast
4 / 8 shared
Demers, Hendrix
3 / 3 shared
Girard, Gabriel
3 / 5 shared
Lorrmann, Henning
3 / 5 shared
Gauvin, Raynald
1 / 6 shared
Savoie, Sylvio
3 / 4 shared
Golozar, Maryam
1 / 1 shared
Demopoulos, George P.
2 / 4 shared
Zhu, Wen
2 / 2 shared
Rumpel, Matthias
1 / 6 shared
Bertoni, Giovanni
2 / 11 shared
Perea, Alexis
2 / 3 shared
Rumpel, Mathias
1 / 1 shared
Monaca, Andrea La
1 / 1 shared
Rosei, Federico
1 / 17 shared
Chart of publication period
2024
2023
2020

Co-Authors (by relevance)

  • Ramteke, D. D.
  • Sliz, Rafal
  • Välikangas, Juho
  • Hu, Tao
  • Fabritius, Tapio
  • Molaiyan, Palanivel
  • Lassi, Ulla
  • Krammer, Martin
  • Proietti, Remo
  • Marras, Sergio
  • Ricci, Marco
  • Pequeno De Oliveira, Helinando
  • Garcia-Alvarado, Flaviano
  • Subramaniyam, Chandrasekar M.
  • Simões Dos Reis, Glaydson
  • De Oliveira, Helinando Pequeno
  • Dos Reis, Glaydson Simoes
  • García-Alvarado, Flaviano
  • Zaghib, Karim
  • Delaporte, Nicolas
  • Guerfi, Abdelbast
  • Demers, Hendrix
  • Girard, Gabriel
  • Lorrmann, Henning
  • Gauvin, Raynald
  • Savoie, Sylvio
  • Golozar, Maryam
  • Demopoulos, George P.
  • Zhu, Wen
  • Rumpel, Matthias
  • Bertoni, Giovanni
  • Perea, Alexis
  • Rumpel, Mathias
  • Monaca, Andrea La
  • Rosei, Federico
OrganizationsLocationPeople

article

Influence of 3D structural design on the electrochemical performances of Aluminum metal as anode for Li‐ion batteries

  • Paolella, Andrea
  • Krammer, Martin
  • Proietti, Remo
  • Molaiyan, Palanivel
  • Marras, Sergio
  • Ricci, Marco
Abstract

Aluminum (Al) is one of the most promising active materials for producing next‐generation negative electrodes for lithium (Li)‐ion batteries. It features low density, high specific capacity, and low working potential, making it ideal for producing energy‐dense cells. However, this material loses its electrochemical activity within 100 cycles, making it practically unusable. Several claims in the literature support the idea that a dual degradation mechanism is at play. Firstly, the slow diffusion of Li in the Al matrix causes the electrochemical reactions to be partly irreversible, making the initial capacity of the cell drop. Second, the stresses caused by cycling make the active material pulverize and lose activity. Recent work shows that shortening the diffusion path of Li by 3D structuring is an effective way to mitigate the first capacity loss mechanism, while alloying Al with other elements effectively mitigates the second one. In this work, we demonstrate that the benefits of 3D structuring and alloying are cumulative and that a mesh made of an Al‐magnesium alloy performs better than both a pure Al foil and a foil of an Al‐Mg alloy.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • Magnesium
  • magnesium alloy
  • Magnesium
  • aluminium
  • Lithium