People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rajendiran, Rajmohan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Asymmetric supercapacitors based on biomass-derived porous activated carbon (PAC)/1D manganese oxide (MnO2) electrodes with high power and energy densitiescitations
- 2020Interplay between porous texture and surface-active sites for efficient oxygen reduction reactions in N-inherited carboncitations
- 2019Transition metal chalcogenide based MnSe heterostructured with NiCo2O4 as a new high performance electrode material for capacitive energy storagecitations
- 2018Stabilization of cryptomelane α-MnO2 nanowires tunnels widths for enhanced electrochemical energy storagecitations
- 2018Revealing the Self-Degradation Mechanisms in Methylammonium Lead Iodide Perovskites in Dark and Vacuum.citations
Places of action
Organizations | Location | People |
---|
article
Revealing the Self-Degradation Mechanisms in Methylammonium Lead Iodide Perovskites in Dark and Vacuum.
Abstract
Organic-inorganic lead halide perovskite phases segregate (and their structures degrade) under illumination, exhibiting a poor stability with hysteresis and producing halide accumulation at the surface.In this work, we observed structural and interfacial dissociation in methylammonium lead iodide (CH3 NH3 PbI3 ) perovskites even under dark and vacuum conditions. Here, we investigate the origin and consequences of self-degradation in CH3 NH3 PbI3 perovskites stored in the dark under vacuum. Diffraction and photoelectron spectroscopic studies reveal the structural dissociation of perovskites into PbI2 , which further dissociates into metallic lead (Pb0 ) and I2- ions, collectively degrading the perovskite stability. Using TOF-SIMS analysis, AuI2- formation was directly observed, and it was found that an interplay between CH3 NH3+ , I3- , and mobile I- ions continuously regenerates more I2- ions, which diffuse to the surface even in the absence of light. Besides, halide diffusion causes a concentration gradient between Pb0 and I2- and creates other ionic traps (PbI2- , PbI- ) that segregate as clusters at the perovskite/gold interface. A shift of the onset of the absorption band edge towards shorter wavelengths was also observed by absorption spectroscopy, indicating the formation of defect species upon aging in the dark under vacuum.