Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Loh, Kian Ping

  • Google
  • 7
  • 41
  • 127

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2021Local Energy Landscape Drives Long-Range Exciton Diffusion in Two-Dimensional Halide Perovskite Semiconductors.citations
  • 2018Stable Molecular Diodes Based on π–π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes44citations
  • 2015Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite14citations
  • 2014Supramolecular structure of self-assembled monolayers of ferrocenyl terminated n-alkanethiolates on gold surfaces31citations
  • 2013Electronic properties of graphene-single crystal diamond heterostructures17citations
  • 2010A HREELS and DFT Study of the Adsorption of Aromatic Hydrocarbons on Diamond (111)4citations
  • 2008Chemical bonding of fullerene and fluorinated fullerene on bare and hydrogenated diamond17citations

Places of action

Chart of shared publication
Stranks, Samuel D.
1 / 101 shared
Baldwin, Alan
1 / 7 shared
Chahbazian, Rosemonde
1 / 1 shared
Delport, Géraud
1 / 16 shared
Galkowski, Krzysztof
1 / 14 shared
Leng, Kai
1 / 1 shared
Song, Peng
1 / 2 shared
Roemer, Max
2 / 2 shared
Thompson, Damien
1 / 2 shared
Nijhuis, Christian A.
2 / 8 shared
Scully, Micheál
1 / 1 shared
Han, Ying Mei
1 / 1 shared
Guerin, Sarah
1 / 3 shared
Yu, Xiaojiang
1 / 3 shared
Tan, Sherman Jun Rong
1 / 1 shared
Adam, Shaffique
1 / 1 shared
Neto, A. H. Castro
1 / 2 shared
Wee, Andrew T. S.
2 / 3 shared
Su, Chenliang
1 / 1 shared
Milletari, M.
1 / 1 shared
Lin, Aigu L.
1 / 1 shared
Chen, Wei
1 / 31 shared
Rodrigues, J. N. B.
1 / 1 shared
Lu, Jiong
1 / 1 shared
Troadec, Cedric
1 / 1 shared
Sotthewes, Kai
1 / 3 shared
Yuan, Li
1 / 2 shared
Cao, Liang
1 / 1 shared
Zandvliet, Harold J. W.
1 / 2 shared
Nerngchamnong, Nisachol
1 / 1 shared
Wu, Hairong
1 / 1 shared
Zhao, Fang
1 / 2 shared
Nguyen, Thuong Thuong
1 / 1 shared
Golsharifi, Nima
1 / 2 shared
Jackman, Richard
1 / 3 shared
Amakubo, Suguru
1 / 1 shared
Sullivan, Michael B.
1 / 3 shared
Hoh, Hui Ying
1 / 1 shared
Ouyang, Ti
2 / 2 shared
Nesladek, Milos
2 / 10 shared
Wu, Ping
1 / 1 shared
Chart of publication period
2021
2018
2015
2014
2013
2010
2008

Co-Authors (by relevance)

  • Stranks, Samuel D.
  • Baldwin, Alan
  • Chahbazian, Rosemonde
  • Delport, Géraud
  • Galkowski, Krzysztof
  • Leng, Kai
  • Song, Peng
  • Roemer, Max
  • Thompson, Damien
  • Nijhuis, Christian A.
  • Scully, Micheál
  • Han, Ying Mei
  • Guerin, Sarah
  • Yu, Xiaojiang
  • Tan, Sherman Jun Rong
  • Adam, Shaffique
  • Neto, A. H. Castro
  • Wee, Andrew T. S.
  • Su, Chenliang
  • Milletari, M.
  • Lin, Aigu L.
  • Chen, Wei
  • Rodrigues, J. N. B.
  • Lu, Jiong
  • Troadec, Cedric
  • Sotthewes, Kai
  • Yuan, Li
  • Cao, Liang
  • Zandvliet, Harold J. W.
  • Nerngchamnong, Nisachol
  • Wu, Hairong
  • Zhao, Fang
  • Nguyen, Thuong Thuong
  • Golsharifi, Nima
  • Jackman, Richard
  • Amakubo, Suguru
  • Sullivan, Michael B.
  • Hoh, Hui Ying
  • Ouyang, Ti
  • Nesladek, Milos
  • Wu, Ping
OrganizationsLocationPeople

article

Chemical bonding of fullerene and fluorinated fullerene on bare and hydrogenated diamond

  • Ouyang, Ti
  • Nesladek, Milos
  • Wee, Andrew T. S.
  • Loh, Kian Ping
Abstract

<p>We investigate the interface between a C<sub>60</sub> fullerite film, C<sub>60</sub>F<sub>36</sub>, and diamond (100) by using core‐level photoemission spectroscopy, cyclic voltammetry (CV), and high‐resolution electron energy loss spectroscopy (HREELS). We show that C<sub>60</sub> can be covalently bonded to reconstructed C(100)‐2×1 and that the bonded interface is sufficiently robust to exhibit characteristic C<sub>60</sub> redox peaks in solution. The bare diamond surface can be passivated against oxidation and hydrogenation by covalently bound C<sub>60</sub>. However, C<sub>60</sub>F<sub>36</sub> is not as stable as C<sub>60</sub> and desorbs below 300 °C (the latter species being stable up to 500 °C on the diamond surface). Neither C<sub>60</sub> fullerite nor C<sub>60</sub>F<sub>36</sub> form reactive interfaces on the hydrogenated surface—they both desorb below 300 °C. The surface transfer doping process of hydrogenated diamond by C<sub>60</sub>F<sub>36</sub> is the most evident one among all the adsorbate systems studied (with a coverage‐dependent band bending induced by C<sub>60</sub>F<sub>36</sub>)<i><sub>.</sub></i></p>

Topics
  • impedance spectroscopy
  • surface
  • reactive
  • cyclic voltammetry
  • electron energy loss spectroscopy