Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruivo, Andreia

  • Google
  • 4
  • 17
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024CIE color coordinates for the design of luminescent glass materials7citations
  • 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics5citations
  • 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics5citations
  • 2014Time-resolved luminescence studies of Eu3+ in soda-lime silicate glasses15citations

Places of action

Chart of shared publication
Laia, César
3 / 9 shared
Martins, Rodrigo
2 / 166 shared
Mendes, Manuel Joao
1 / 18 shared
Vaz Pinto, Joana
1 / 12 shared
Mateus, Tiago
2 / 12 shared
Águas, Hugo
3 / 41 shared
Ferro, Marta
2 / 3 shared
Santa, Ana
2 / 4 shared
Deuermeier, Jonas
2 / 38 shared
Pinheiro, Ana
2 / 2 shared
Rocha, João
2 / 14 shared
Gago, Sandra
2 / 4 shared
Mendes, Manuel J.
1 / 7 shared
Laia, César A. T.
1 / 1 shared
Pinto, Joana Vaz
1 / 3 shared
Matos, António Pires De
1 / 2 shared
Muralha, Vania S. F.
1 / 1 shared
Chart of publication period
2024
2023
2014

Co-Authors (by relevance)

  • Laia, César
  • Martins, Rodrigo
  • Mendes, Manuel Joao
  • Vaz Pinto, Joana
  • Mateus, Tiago
  • Águas, Hugo
  • Ferro, Marta
  • Santa, Ana
  • Deuermeier, Jonas
  • Pinheiro, Ana
  • Rocha, João
  • Gago, Sandra
  • Mendes, Manuel J.
  • Laia, César A. T.
  • Pinto, Joana Vaz
  • Matos, António Pires De
  • Muralha, Vania S. F.
OrganizationsLocationPeople

article

CIE color coordinates for the design of luminescent glass materials

  • Laia, César
  • Ruivo, Andreia
Abstract

Publisher Copyright: © 2023 The Authors. Color Research and Application published by Wiley Periodicals LLC. ; New photoluminescent materials have numerous possibilities in many different areas from technological applications to contemporary glass art and design, encouraging the development of new forms and products. Glass luminescent materials, known for their exceptional durability and recyclability, position glass as an ideal solution for fostering a more sustainable future. In recent years, white luminescence in glass and ceramics has been the subject of several investigations about its possible application in white light-emitting diodes (WLED). Color coordinates and CIE chromaticity diagrams serve as valuable tools to represent and define the range of luminescent colors achievable in a particular composition. These aid in understanding wheter a composition can be used to produce white luminescence or various other colors. In this study, a soda-lime silicate glass composition was doped with a mixture of different lanthanide oxides to increase the luminescence color palette. The same glass sample can also present different colors by changing the excitation light, allowing higher tunability of luminescent colors. It was effectively demonstrated the extensive spectrum of colors produced, which was represented through luminescence color coordinates for all synthesized glasses. Moreover, the possibility of detecting if an excited state process is occurring was studied by calculating the lanthanides factors and comparing them with those used in the glass synthesis. Nevertheless, it is shown that the energy transfer process has to be significant to influence the color coordinates and the calculation of the factors. ; publishersversion ; published

Topics
  • impedance spectroscopy
  • photoluminescence
  • glass
  • glass
  • ceramic
  • durability
  • Lanthanide
  • lime
  • luminescence
  • liquid-liquid chromatography