People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Faisal, Nadimul Haque
Robert Gordon University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Machine learning approach to investigate high temperature corrosion of critical infrastructure materials.
- 2024Thermal spray coatings for molten salt facing structural parts and enabling opportunities for thermochemical cycle electrolysiscitations
- 2024Machine learning model of acoustic signatures: Towards digitalised thermal spray manufacturingcitations
- 2024Thermal spray coatings for molten salt facing structural parts and enabling opportunities for thermochemical cycle electrolysis.citations
- 2023Acoustic emission sensor-assisted process monitoring of air plasma-sprayed titanium deposition.citations
- 2023Machine learning model of acoustic signatures: towards digitalised thermal spray manufacturing.citations
- 2022Application of Thermal Spray Coatings in Electrolysers for Hydrogen Productioncitations
- 2022Effect of fillers on compression loading performance of modified re-entrant honeycomb auxetic sandwich structures.citations
- 2022Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunities.citations
- 2022Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunitiescitations
- 2022Application of Thermal Spray Coatings in Electrolysers for Hydrogen Production : Advances, Challenges, and Opportunitiescitations
- 2021Measuring residual strain and stress in thermal spray coatings using neutron diffractometers. [Preprint]citations
- 2020Microwave irradiation synthesis and characterization of reduced-(graphene oxide-(polystyrene-polymethyl methacrylate))/silver nanoparticle nanocomposites and their anti-microbial activity.citations
- 2018Analysis of acoustic emission propagation in metal-to-metal adhesively-bonded joints.citations
- 2015Sliding wear investigation of suspension sprayed WC-Co nanocomposite coatingscitations
- 2015Twinning anisotropy of tantalum during nanoindentationcitations
- 2015Twinning anisotropy of tantalum during nanoindentationcitations
- 2014Twinning anisotropy of tantalum during nanoindentation.citations
- 2014Can a carbon nano-coating resist metallic phase transformation in silicon substrate during nanoimpact?citations
- 2014Can a carbon nano-coating resist metallic phase transformation in silicon substrate during nanoimpact?citations
- 2014Atomistic investigation on the structure-property relationship during thermal spray nanoparticle impactcitations
- 2014Atomistic investigation on the structure-property relationship during thermal spray nanoparticle impactcitations
- 2013Atomistic investigation on the structure-property relationship during thermal spray nanoparticle impact.citations
- 2009Acoustic emission analysis for quality assessment of thermally sprayed coatings
Places of action
Organizations | Location | People |
---|
article
Application of Thermal Spray Coatings in Electrolysers for Hydrogen Production
Abstract
<p>Thermal spray coatings have the advantage of providing thick and functional coatings from a range of engineering materials. The associated coating processes provide good control of coating thickness, morphology, microstructure, pore size and porosity, and residual strain in the coatings through selection of suitable process parameters for any coating material of interest. This review consolidates scarce literature on thermally sprayed components which are critical and vital constituents (e. g., catalysts (anode/cathode), solid electrolyte, and transport layer, including corrosion-prone parts such as bipolar plates) of the water splitting electrolysis process for hydrogen production. The research shows that there is a gap in thermally sprayed feedstock material selection strategy as well as in addressing modelling needs that can be crucial to advancing applications exploiting their catalytic and corrosion-resistant properties to split water for hydrogen production. Due to readily scalable production enabled by thermal spray techniques, this manufacturing route bears potential to dominate the sustainable electrolyser technologies in the future. While the well-established thermal spray coating variants may have certain limitations in the manner they are currently practiced, deployment of both conventional and novel thermal spray approaches (suspension, solution, hybrid) is clearly promising for targeted development of electrolysers.</p>