People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mamakhel, Aref
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Synthesis and characterization of an organic-inorganic hybrid crystal
- 2022X-ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworkscitations
- 2022X-ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworkscitations
- 2022Composition space of PtIrPdRhRu high entropy alloy nanoparticles synthesized by solvothermal reactionscitations
- 2022Composition space of PtIrPdRhRu high entropy alloy nanoparticles synthesized by solvothermal reactionscitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2022Synthesis of Phase-Pure Thermochromic VO2 (M1)citations
- 2021Tailoring the stoichiometry of C 3 N 4 nanosheets under electron beam irradiationcitations
- 2021Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation
- 2021Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiationcitations
- 2021Tuning of bandgaps and emission properties of light-emitting diode materials through homogeneous alloying in molecular crystalscitations
- 2019Promotion Mechanisms of Au Supported on TiO2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalystscitations
- 2019Promotion Mechanisms of Au Supported on TiO 2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversioncitations
- 2018Functionally Graded (PbTe)1-x(SnTe)x Thermoelectricscitations
- 2017In Situ PDF Study of the Nucleation and Growth of Intermetallic PtPb Nanocrystalscitations
- 2017Supercritical flow synthesis of Pt1-xRux nanoparticles: comparative phase diagram study of nanostructure versus bulkcitations
- 2016Electron Density Analysis of the "O-O" Charge-Shift Bonding in Rubrene Endoperoxidecitations
- 2015A Novel Dual-Stage Hydrothermal Flow Reactor
Places of action
Organizations | Location | People |
---|
article
In Situ PDF Study of the Nucleation and Growth of Intermetallic PtPb Nanocrystals
Abstract
<p>The mechanism of Pt and PtPb nanocrystal formation under supercritical ethanol conditions has been investigated by means of in situ X-ray total scattering and pair distribution function (PDF) analysis. The metal complex structures of two different platinum precursor solutions, chloroplatinic acid and Pt(acac)(2) (acac=acetylacetonate) provide atomic-scale detail about the nucleation mechanisms after initiation of the reaction with Pb(acac)(2) by heating. The stronger Pt-O chemical bonding in the Pt(acac)(2) precursor complex compared with the Pt-Cl bonding in the chloroplatinic acid precursor complex leads to a much slower reduction of the Pt center, and this allows more optimal co-reduction conditions providing a pathway for formation of phase-pure intermetallic PtPb product. The matching chemistry of the Pt(acac)(2) and Pb(acac)(2) precursors allow development of a facile continuous flow supercritical ethanol process for obtaining phase-pure hexagonal PtPb nanocrystals. The study thus highlights the importance of in situ studies in revealing atomic-scale information about nucleation mechanisms, which can be used in design of specific synthesis pathways, and the new continuous-flow process to obtain PtPb nanocrystals holds potential for large-scale production.</p>