Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chauhan, Anjali

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Magnetic Carbon Nanotubes‐Silica Binary Composite for Effective Pb(II) Sequestration from Industrial Effluents: Multivariate Process Optimization4citations

Places of action

Chart of shared publication
Rais, Saman
1 / 1 shared
Ahmad, Izhar
1 / 2 shared
Javed, Hina
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Rais, Saman
  • Ahmad, Izhar
  • Javed, Hina
OrganizationsLocationPeople

article

Magnetic Carbon Nanotubes‐Silica Binary Composite for Effective Pb(II) Sequestration from Industrial Effluents: Multivariate Process Optimization

  • Rais, Saman
  • Chauhan, Anjali
  • Ahmad, Izhar
  • Javed, Hina
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, magnetic multiwalled carbon nanotubes‐silica binary composite (mCNT@APS) is synthesized via amide bond and utilized for the Pb(II) adsorption from aqueous solutions in batch mode. The composite is characterized using Fourier transform infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and point of zero charge (pH<jats:sub>pzc</jats:sub>) studies. Three levels and three factorial Box–Behnken design in response surface methodology is employed to assess and optimize the effects of influential parameters: pH, initial concentration, and contact time. Using the desirability function, the obtained optimum conditions are pH 5.4, feed concentration 757 µg mL<jats:sup>−1</jats:sup> and contact time 4 min. The electrostatic attraction between the active binding sites of adsorbent and Pb(II) at pH<jats:sub>pzc</jats:sub> &lt; pH results in higher saturation capacity (79.69 mg g<jats:sup>−1</jats:sup>) in accordance with the best fitted non‐linearized Langmuir isotherm model. The pseudo‐second‐order model fits well to the kinetic data implying chemisorption of Pb(II) onto mCNT@APS. The material can be regenerated up to 15 sorption–desorption cycles using 5 mL of 1.5 <jats:sc>M</jats:sc> HNO<jats:sub>3</jats:sub>. The adsorbent exhibits excellent Pb(II) removal efficiency (&gt;98%) from industrial effluents and tap water samples.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • scanning electron microscopy
  • x-ray diffraction
  • nanotube
  • composite
  • transmission electron microscopy
  • thermogravimetry
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy
  • appearance potential spectroscopy