People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Synergetic and anomalous effect of <scp>CNTs</scp> in the sulphide‐based binary composite for an extraordinary and asymmetric supercapacitor devicecitations
- 2024Nanoparticle's efficacy in the suppression of heavy metals that affect breast cancer progression.citations
- 2023Exploring the potential of hydrothermally synthesized AgZnS@Polyaniline composites as electrode material for high-performance supercapattery devicecitations
- 2023Mechanically robust and highly elastic thermally induced shape memory polyurethane based composites for smart and sustainable robotic applicationscitations
- 2023Prediction of Coal Dilatancy Point Using Acoustic Emission Characteristicscitations
- 2023Biologically potent organotin(<scp>iv</scp>) complexes of <i>N</i>-acetylated β-amino acids with spectroscopic, X-ray powder diffraction and molecular docking studiescitations
- 2023Baseline ImPACT Composite Scores in Student-Athletes With Attention-Deficit/Hyperactivity Disordercitations
- 2023Advanced High‐Energy All‐Solid‐State Hybrid Supercapacitor with Nickel‐Cobalt‐Layered Double Hydroxide Nanoflowers Supported on Jute Stick‐Derived Activated Carbon Nanosheetscitations
- 2022Hybrid composites based on textile hard waste: use as sunshadescitations
- 2020Optimization of tensile properties of bagasse fiber-reinforced composite using response surface methodology
- 2020Investigation of fiber orientation and void content in bagasse fiber composites using image analysis technique
- 2016Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers.
- 2009Maskless roughening of sapphire substrates for enhanced light extraction of nitride based blue LEDscitations
- 2008Enhanced electroluminescence in 405 nm InGaN/GaN LEDs by optimized electron blocking layercitations
Places of action
Organizations | Location | People |
---|
article
Synergetic and anomalous effect of <scp>CNTs</scp> in the sulphide‐based binary composite for an extraordinary and asymmetric supercapacitor device
Abstract
<jats:title>Abstract</jats:title><jats:p>Carbon nanotubes (CNTs) have attained great interest from researchers due to their excellent electrical conductivity, vast surface area, and good chemical stability. In this work, the sulphide‐based composite Ag<jats:sub>2</jats:sub>S@ZnS was synthesized using the hydrothermal method and was doped with CNTs in various weight percentage ratios. The structural and morphological characteristics of the samples were evaluated by employing X‐ray diffractometry (XRD), X‐ray photo spectroscopy (XPS), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, and thermogravimetric analysis (TGA), while cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) were also executed for their electrochemical characterization. The performance of the Ag<jats:sub>2</jats:sub>S@ZnS electrode was enhanced after the doping of CNTs because of their synergistic effect. An extraordinary specific capacity (<jats:italic>Q</jats:italic><jats:sub>s</jats:sub>) of 946.5 Cg<jats:sup>−1</jats:sup> (262.91 mAh g<jats:sup>−1</jats:sup>) was exhibited by Ag<jats:sub>2</jats:sub>S@ZnS with 50% CNTs doping (Ag<jats:sub>2</jats:sub>S@ZnS/CNT‐50%), which is significantly greater than the reference samples. Furthermore, an asymmetric supercapacitor was designed and assessed for its electrochemical properties. The specific capacity of the asymmetric supercapacitor reached 148.62 Cg<jats:sup>−1</jats:sup> (41.28 mAh g<jats:sup>−1</jats:sup>). The device showed improved stability and retained the 87% initial capacity after 5000 cycles. The energy and power densities were found to be 33.02 Wh kg<jats:sup>−1</jats:sup> at 639.98 W kg<jats:sup>−1</jats:sup>, respectively, with a high value of coulombic efficiency of 92%. The device succeeded in acquiring a higher power density of 3200 W kg<jats:sup>−1</jats:sup> for an energy density of 4 Wh kg<jats:sup>−1</jats:sup>. These astonishing results provide opportunities to design high‐performance electrode materials for extraordinary energy storage devices.</jats:p>