Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Weisser, Julia

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Quantitative Characterization of RCA‐based DNA Hydrogels – Towards Rational Design2citations

Places of action

Chart of shared publication
Lemke, Phillip
1 / 3 shared
Niemeyer, Christof M.
1 / 10 shared
Stoev, Iliya
1 / 1 shared
Domínguez, Carmen M.
1 / 6 shared
Moench, Svenja A.
1 / 1 shared
Rabe, Kersten S.
1 / 7 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Lemke, Phillip
  • Niemeyer, Christof M.
  • Stoev, Iliya
  • Domínguez, Carmen M.
  • Moench, Svenja A.
  • Rabe, Kersten S.
OrganizationsLocationPeople

article

Quantitative Characterization of RCA‐based DNA Hydrogels – Towards Rational Design

  • Lemke, Phillip
  • Niemeyer, Christof M.
  • Stoev, Iliya
  • Domínguez, Carmen M.
  • Moench, Svenja A.
  • Weisser, Julia
  • Rabe, Kersten S.
Abstract

<jats:p>DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems.</jats:p>

Topics
  • viscosity