People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Felici, Roberto
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024On the Electrochemical Growth of a Crystalline p–n Junction From Aqueous Solutionscitations
- 2023Spin-dependent charge transmission through chiral 2T3N self-assembled monolayer on Aucitations
- 2023Spin-dependent charge transmission through chiral 2T3N self-assembled monolayer on Aucitations
- 2020From the Surface Structure to Catalytic Properties of Al 5 Co 2 (21̅0): A Study Combining Experimental and Theoretical Approachescitations
- 2019Influence of Surface Strain on Passive Film Formation of Duplex Stainless Steel and Its Degradation in Corrosive Environmentcitations
- 2019Redefining passivity breakdown of super duplex stainless steel by electrochemical operando synchrotron near surface X-ray analysescitations
- 2016Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cellscitations
- 2015Surface alloying upon Co intercalation between graphene and Ir(111)citations
- 2014A Procedure to Analyze SXRD Data of CuxSz and CuxZnySz Thin Films
Places of action
Organizations | Location | People |
---|
article
On the Electrochemical Growth of a Crystalline p–n Junction From Aqueous Solutions
Abstract
<jats:title>Abstract</jats:title><jats:p>Our society largely relies on inorganic semiconductor devices which are, so far, fabricated using expensive and complex processes requiring ultra‐high vacuum equipment. Here we report on the possibility of growing a p–n junction taking advantage of electrochemical processes based on the use of aqueous solutions. The growth of the junction has been carried out using the Electrochemical Atomic Layer Deposition (E‐ALD) technique, which allowed to sequentially deposit two different semiconductors, CdS and Cu<jats:sub>2</jats:sub>S, on an Ag(111) substrate, in a single procedure. The growth process was monitored in situ by Surface X‐Ray Diffraction (SXRD) and resulted in the fabrication of a thin double‐layer structure with a high degree of crystallographic order and a well‐defined interface. The high‐performance electrical characteristics of the device were analysed ex‐situ and show the characteristic feature of a diode.</jats:p>