Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Esmeraldo Paiva, Aislan

  • Google
  • 1
  • 3
  • 4

Trinity College Dublin

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Synthesis, Characterisation, and Functionalisation of Charged Two‐Dimensional MoS24citations

Places of action

Chart of shared publication
Morris, Michael
1 / 9 shared
Krajewska, Aleksandra M.
1 / 1 shared
Mcdonald, Aidan
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Morris, Michael
  • Krajewska, Aleksandra M.
  • Mcdonald, Aidan
OrganizationsLocationPeople

article

Synthesis, Characterisation, and Functionalisation of Charged Two‐Dimensional MoS2

  • Morris, Michael
  • Krajewska, Aleksandra M.
  • Esmeraldo Paiva, Aislan
  • Mcdonald, Aidan
Abstract

<jats:title>Abstract</jats:title><jats:p>The applications of exfoliated MoS<jats:sub>2</jats:sub> are limited by its inert surface and poor interface. We have activated the surface of exfoliated 2H‐MoS<jats:sub>2</jats:sub> by reacting it with NaBH<jats:sub>4</jats:sub>, forming an n‐doped material as demonstrated by a negative zeta‐potential value <jats:italic>ζ</jats:italic>=−25 mV and a 20 nm (0.05 eV) red‐shift in its photoluminescence spectrum. The novel material's spectral properties were consistent with pristine 2H‐MoS<jats:sub>2</jats:sub> (as determined by HR‐TEM, XPS, pXRD, DRIFT, TGA, and Raman spectroscopy). Importantly, it was readily dispersed in H<jats:sub>2</jats:sub>O unlike 2H‐MoS<jats:sub>2</jats:sub>. Its dispersibility properties were explored for a variety of solvents and could be directly correlated with the relative permittivity of the respective solvents. The charged 2H‐MoS<jats:sub>2</jats:sub> reacted readily with an organo‐iodide to deliver functionalized 2H‐MoS<jats:sub>2</jats:sub>. Our approach delivers aqueous dispersions of semiconducting 2H‐MoS<jats:sub>2</jats:sub>, without additives or chemical functionalities, and allows for controlled and facile functionalization of 2H‐MoS<jats:sub>2</jats:sub> opening multiple new avenues of semi‐conducting MoS<jats:sub>2</jats:sub> application.</jats:p>

Topics
  • dispersion
  • surface
  • photoluminescence
  • x-ray photoelectron spectroscopy
  • dielectric constant
  • transmission electron microscopy
  • thermogravimetry
  • forming
  • functionalization
  • Raman spectroscopy