Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vitoricayrezabal, Inigo

  • Google
  • 1
  • 7
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Breathing Behaviour Modification of Gallium MIL‐53 Metal–Organic Frameworks Induced by the Bridging Framework Inorganic Anion5citations

Places of action

Chart of shared publication
Nangkam, Lynda T.
1 / 1 shared
Johansson, Jens O. W.
1 / 1 shared
Luttongething, A. R. Bonity J.
1 / 1 shared
Pallikara, Ioanna
1 / 1 shared
Whitehead, George F. S.
1 / 9 shared
Attfield, Martin
1 / 8 shared
Skelton, Jonathan M.
1 / 30 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Nangkam, Lynda T.
  • Johansson, Jens O. W.
  • Luttongething, A. R. Bonity J.
  • Pallikara, Ioanna
  • Whitehead, George F. S.
  • Attfield, Martin
  • Skelton, Jonathan M.
OrganizationsLocationPeople

article

Breathing Behaviour Modification of Gallium MIL‐53 Metal–Organic Frameworks Induced by the Bridging Framework Inorganic Anion

  • Nangkam, Lynda T.
  • Johansson, Jens O. W.
  • Luttongething, A. R. Bonity J.
  • Vitoricayrezabal, Inigo
  • Pallikara, Ioanna
  • Whitehead, George F. S.
  • Attfield, Martin
  • Skelton, Jonathan M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Controlling aspects of the μ<jats:sub>2</jats:sub>‐X<jats:sup>−</jats:sup> bridging anion in the metal–organic framework Ga‐MIL‐53 [GaX(bdc)] (X<jats:sup>−</jats:sup>=(OH)<jats:sup>−</jats:sup> or F<jats:sup>−</jats:sup>, bdc=1, 4‐benzenedicarboxylate) is shown to direct the temperature at which thermally induced breathing transitions of this framework occur. In situ single crystal X‐ray diffraction studies reveal that substituting 20 % of (OH)<jats:sup>−</jats:sup> in [Ga(OH)(bdc)] (<jats:bold>1</jats:bold>) for F<jats:sup>−</jats:sup> to produce [Ga(OH)<jats:sub>0.8</jats:sub>F<jats:sub>0.2</jats:sub>(bdc)] (<jats:bold>2</jats:bold>) stabilises the large pore (lp) form relative to the narrow pore (np) form, causing a well‐defined decrease in the onset of the lp to np transition at higher temperatures, and the adsorption/desorption of nitrogen at lower temperatures through np to lp to intermediate (int) pore transitions. These in situ diffraction studies have also yielded a more plausible crystal structure of the int‐[GaX(bdc)] ⋅ H<jats:sub>2</jats:sub>O phases and shown that increasing the heating rate to a flash heating regime can enable the int‐[GaX(bdc)] ⋅ H<jats:sub>2</jats:sub>O to lp‐[GaX(bdc)] transition to occur at a lower temperature than np‐[GaX(bdc)] via an unreported pathway.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • single crystal
  • phase
  • Nitrogen
  • Gallium