People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smith, Rebecca
Royal Devon & Exeter NHS Foundation Trust
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024P202 Streamlining primary and secondary care pathways reduces the time-to-specialist IBD care: the emergence of FIT and the relative decline of calprotectin testing in primary care
- 2024OP11 Exploring the potential clinical utility of NUDT15 pharmacogenetic testing in clinical practice: a ‘focused reverse phenotyping’ study in the UK IBD Bioresource
- 2024P234 Online direct-to-public calprotectin testing in the UK: what is out there in 2023?
- 2023Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneitycitations
- 2022Metal–ligand Lability and Ligand Mobility Enables Framework Transformation via Ligand Release in a Family of Crystalline 2D Coordination Polymerscitations
- 2018'Designing' biomass lignins for the biorefinery
Places of action
Organizations | Location | People |
---|
article
Metal–ligand Lability and Ligand Mobility Enables Framework Transformation via Ligand Release in a Family of Crystalline 2D Coordination Polymers
Abstract
<jats:title>Abstract</jats:title><jats:p>A family of seven silver(I)‐perfluorocarboxylate‐quinoxaline coordination polymers, [Ag<jats:sub>4</jats:sub>(O<jats:sub>2</jats:sub>CR<jats:sub>F</jats:sub>)<jats:sub>4</jats:sub>(quin)<jats:sub>4</jats:sub>] <jats:bold>1</jats:bold>–<jats:bold>5</jats:bold> (R<jats:sub>F</jats:sub>=(CF<jats:sub>2</jats:sub>)<jats:sub>n‐1</jats:sub>CF<jats:sub>3</jats:sub>)<jats:sub>4</jats:sub>, n=1 to 5); [Ag<jats:sub>4</jats:sub>(O<jats:sub>2</jats:sub>C(CF<jats:sub>2</jats:sub>)<jats:sub>2</jats:sub>CO<jats:sub>2</jats:sub>)<jats:sub>2</jats:sub>(quin)<jats:sub>4</jats:sub>] <jats:bold>6</jats:bold>; [Ag<jats:sub>4</jats:sub>(O<jats:sub>2</jats:sub>CC<jats:sub>6</jats:sub>F<jats:sub>5</jats:sub>)<jats:sub>4</jats:sub>(quin)<jats:sub>4</jats:sub>] <jats:bold>7</jats:bold> (quin=quinoxaline), denoted by composition as <jats:italic>4 : 4 : 4 phases</jats:italic>, was synthesised from reaction of the corresponding silver(I) perfluorocarboxylate with excess quinoxaline. Compounds <jats:bold>1</jats:bold>–<jats:bold>7</jats:bold> adopt a common 2D layered structure in which 1D silver‐perfluorcarboxylate chains are crosslinked by ditopic quinoxaline ligands. Solid‐state reaction upon heating, involving loss of one equivalent of quinoxaline, yielding new crystalline <jats:italic>4 : 4 : 3 phases</jats:italic> [Ag<jats:sub>4</jats:sub>(O<jats:sub>2</jats:sub>C(CF<jats:sub>2</jats:sub>)<jats:sub>n‐1</jats:sub>CF<jats:sub>3</jats:sub>)<jats:sub>4</jats:sub>(quin)<jats:sub>3</jats:sub>]<jats:sub>n</jats:sub> (<jats:bold>8</jats:bold>–<jats:bold>10</jats:bold>, n=1 to 3), was followed in situ by PXRD and TGA studies. Crystal structures were confirmed by direct syntheses and structure determination. The solid‐state reaction converting <jats:italic>4 : 4 : 4</jats:italic> to <jats:italic>4 : 4 : 3 phase</jats:italic> materials involves cleavage and formation of Ag−N and Ag−O bonds to enable the structural rearrangement. One of the <jats:italic>4 : 4 : 3 phase</jats:italic> coordination polymers (<jats:bold>10</jats:bold>) shows the remarkably high dielectric constant in the low electric field frequency range.</jats:p>