People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Edler, Karen J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Nanostructure in Amphiphile-Based Deep Eutectic Solventscitations
- 2023The effect of polymer end-group on the formation of styrene – maleic acid lipid particles (SMALPs)citations
- 2022Neutron Diffraction Study of Indole Solvation in Deep Eutectic Systems of Choline Chloride, Malic Acid, and Watercitations
- 2022Comparison of Cyclic and Linear Poly(lactide)s Using Small-Angle Neutron Scattering
- 2021Structural Evolution of Iron Forming Iron Oxide in a Deep Eutectic-Solvothermal Reactioncitations
- 2021Self-assembly of ionic and non-ionic surfactants in type IV cerium nitrate and urea based deep eutectic solventcitations
- 2020Mesoporous silica formation mechanisms probed using combined Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) and Small Angle Neutron Scattering (SANS)citations
- 2019Structure and properties of ‘Type IV’ lanthanide nitrate hydrate:urea deep eutectic solventscitations
- 2019An introduction to classical molecular dynamics simulation for experimental scattering userscitations
- 2016Atomistic modelling of scattering data in the ollaborative Computational Project for Small Angle Scattering (CCP-SAS)citations
- 2016Atomistic modelling of scattering data in the ollaborative Computational Project for Small Angle Scattering (CCP-SAS)citations
- 2015Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteinscitations
- 2015Thin-film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosancitations
- 2011Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite filmscitations
- 2009Electrochemically Active Mercury Nanodroplets Trapped in a Carbon Nanoparticle - Chitosan Matrixcitations
- 2008Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular networkcitations
- 2008Thin-film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosancitations
- 2007Layer-by-layer deposition of open-pore mesoporous TiO2-Nafion (R) film electrodescitations
Places of action
Organizations | Location | People |
---|
article
Neutron Diffraction Study of Indole Solvation in Deep Eutectic Systems of Choline Chloride, Malic Acid, and Water
Abstract
<p>Deep eutectic systems are currently under intense investigation to replace traditional organic solvents in a range of syntheses. Here, indole in choline chloride-malic acid deep eutectic solvent (DES) was studied as a function of water content, to identify solute interactions with the DES which affect heterocycle reactivity and selectivity, and as a proxy for biomolecule solvation. Empirical Potential Structure Refinement models of neutron diffraction data showed [Cholinium]<sup>+</sup> cations associate strongly with the indole π-system due to electrostatics, whereas malic acid is only weakly associated. Trace water is sequestered into the DES and does not interact strongly with indole. When water is added to the DES, it does not interact with the indole π-system but is exclusively in-plane with the heterocyclic rings, forming strong H-bonds with the -NH group, and also weak H-bonds and thus prominent hydrophobic hydration of the indole aromatic region, which could direct selectivity in reactions.</p>