People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Overgaard, Jacob
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Electron Density Analysis of Metal-Metal Bonding in a Ni 4 Cluster Featuring Ferromagnetic Exchangecitations
- 2023Electron density analysis of metal-metal bonding in a Ni4 cluster featuring ferromagnetic exchangecitations
- 2020Chemical bonding in colossal thermopower FeSb2citations
- 2020High-Pressure Crystallographic and Magnetic Studies of Pseudo-D5h Symmetric Dy(III) and Ho(III) Single-Molecule Magnetscitations
- 2020Structure, DFT based investigations on vibrational and nonlinear optical behavior of a new guanidinium cobalt thiocyanate complexcitations
- 2019Insights into Single-Molecule-Magnet Behavior from the Experimental Electron Density of Linear Two-Coordinate Iron Complexescitations
- 2018Determination of d-Orbital Populations in a Cobalt(II) Single-Molecule Magnet Using Single-Crystal X-ray Diffractioncitations
- 2017Crystal structure across the β to α phase transition in thermoelectric Cu2−xSecitations
- 2016Anisotropic compressibility of the coordination polymer emim[Mn(btc)]citations
- 2016Electron Density Analysis of the "O-O" Charge-Shift Bonding in Rubrene Endoperoxidecitations
- 2014$mathrm{(NH_{4})_{4}Sn_{2}S_{6}·3H_{2}O}$: Crystal Structure, Thermal Decomposition, and Precursor for Textured Thin Filmcitations
- 2014Alkali Metal Ion Templated Transition Metal Formate Framework Materialscitations
- 2014Alkali Metal Ion Templated Transition Metal Formate Framework Materials:Synthesis, Crystal Structures, Ion Migration, and Magnetismcitations
- 2014Metal distribution and disorder in the crystal structure of [NH2Et2][Cr7MF8(tBuCO2)16] wheel molecules for M = Mn, Fe, Co, Ni, Cu, Zn and Cdcitations
- 2013Pressure versus temperature effects on intramolecular electron transfer in mixed-valence complexescitations
- 2012Charge density study of two FeS2 polymorphs
- 2012Charge density study of two FeS2 polymorphs:Experimental charge density study of two FeS2 structures
- 2009Experimental charge density in an oxidized trinuclear iron complex using 15 K synchrotron and 100 K conventional single-crystal X-ray diffractioncitations
Places of action
Organizations | Location | People |
---|
article
Chemical bonding in colossal thermopower FeSb2
Abstract
<p>FeSb<sub>2</sub> exhibits a colossal Seebeck coefficient ((Formula presented.)) and a record-breaking high thermoelectric power factor. It also has an atypical shift from diamagnetism to paramagnetism with increasing temperature, and the fine details of its electron correlation effects have been widely discussed. The extraordinary physical properties must be rooted in the nature of the chemical bonding, and indeed, the chemical bonding in this archetypical marcasite structure has been heavily debated on a theoretical basis since the 1960s. The two prevalent models for describing the bonding interactions in FeSb<sub>2</sub> are based on either ligand-field stabilization of Fe or a network structure of Sb hosting Fe ions. However, neither model can account for the observed properties of FeSb<sub>2</sub>. Herein, an experimental electron density study is reported, which is based on analysis of synchrotron X-ray diffraction data measured at 15 K on a minute single crystal to limit systematic errors. The analysis is supplemented with density functional theory calculations in the experimental geometry. The experimental data are at variance with both the additional single-electron Sb−Sb bond implied by the covalent model, and the large formal charge and expected d-orbital splitting advocated by the ionic model. The structure is best described as an extended covalent network in agreement with expectations based on electronegativity differences.</p>