People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arenz, Matthias
University of Bern
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Downprobed by in situ WAXS and SAXScitations
- 2024Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Down probed by in situ WAXS and SAXS.citations
- 2023The more the better:on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reactioncitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scatteringcitations
- 2023Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolutioncitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering:Influence of Precursors and Cations on the Reaction Pathwaycitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering:Influence of Precursors and Cations on the Reaction Pathwaycitations
- 2023The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reactioncitations
- 2023Formation of intermetallic PdIn nanoparticles: influence of surfactants on nanoparticle atomic structurecitations
- 2023The more the bettercitations
- 2022Nanocomposite Concept for Electrochemical In Situ Preparation of Pt–Au Alloy Nanoparticles for Formic Acid Oxidationcitations
- 2022Nanocomposite Concept for Electrochemical in Situ Preparation of Pt-Au Alloy Nanoparticles for Formic Acid Oxidationcitations
- 2022High entropy alloy nanoparticle formation at low temperatures
- 2021Operando SAXS study of a Pt/C fuel cell catalyst with an X-ray laboratory sourcecitations
- 2021The Gas Diffusion Electrode Setup as Straightforward Testing Device for Proton Exchange Membrane Water Electrolyzer Catalysts
- 2021Elucidating Pt-Based Nanocomposite Catalysts for the Oxygen Reduction Reaction in Rotating Disk Electrode and Gas Diffusion Electrode Measurementscitations
- 2021Bifunctional Pt-IrO2Catalysts for the Oxygen Evolution and Oxygen Reduction Reactionscitations
- 2021Bayesian optimization of high‐entropy alloy compositions for electrocatalytic oxygen reductioncitations
- 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticlescitations
- 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticlescitations
- 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalystscitations
- 2018On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Methodcitations
- 2018Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performances
Places of action
Organizations | Location | People |
---|
article
Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles
Abstract
<p>Understanding the formation of nanoparticles (NPs) is key to develop materials via sustainable routes. The Co4Cat TM process is a new synthesis of precious metal NPs in alkaline mono-alcohols well-suited to develop active nanocatalysts. The synthesis is 'facile', surfactant-free and performed under mild conditions like low temperature. Interestingly, this process is sensitive to parameters masked in other colloidal syntheses. The oxidation properties of the solvent are here shown to strongly influence the formation of Pt NPs. Based on the in situ formation of CO adsorbed on the NP surface by solvent oxidation, a model is proposed that accounts for the different growth and stabilization mechanisms as well as re-dispersion properties of the surfactant-free NPs in different solvents. Using in situ and ex situ characterizations, it is established that in methanol, a slow nucleation with a limited NP growth is achieved. In ethanol, a fast nucleation followed by continuous and pronounced particle sintering occurs. The results support further strategies to rationally design, investigate, control and produce improved NPs for fundamental and applied research.</p>