People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Douthwaite, Richard E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradationcitations
- 2020Pompon Dahlia-like Cu2O/rGO Nanostructures for Visible Light Photocatalytic H2 Production and 4-Chlorophenol Degradationcitations
- 2020Pompon Dahlia‐like Cu2O/rGO Nanostructures for Visible Light Photocatalytic H2 Production and 4‐Chlorophenol Degradationcitations
- 2018Delaminated CoAl-Layered Double Hydroxide@TiO2Heterojunction Nanocomposites for Photocatalytic Reduction of CO2citations
- 2018Delaminated CoAl‐Layered Double Hydroxide@TiO2 Heterojunction Nanocomposites for Photocatalytic Reduction of CO2citations
- 2018Delaminated CoAl-Layered Double Hydroxide@TiO2 Heterojunction Nanocomposites for CO2 Photocatalytic Reduction
- 2017P25@CoAl layered double hydroxide heterojunction nanocomposites for CO 2 photocatalytic reductioncitations
- 2017P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction
- 2017P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reductioncitations
- 2017Delaminated CoAl-Layered Double Hydroxide at TiO2 Heterojunction Nanocomposites for Photocatalytic Reduction of CO2citations
- 2009Synthesis, Coordination Chemistry and Bonding of Strong N-Donor Ligands Incorporating the 1H-Pyridin-(2E)-Ylidene (PYE) Motifcitations
Places of action
Organizations | Location | People |
---|
article
Synthesis, Coordination Chemistry and Bonding of Strong N-Donor Ligands Incorporating the 1H-Pyridin-(2E)-Ylidene (PYE) Motif
Abstract
<p>A range of N-donor ligands based on the 1H-pyridin-(2E)-ylidene (PYE) motif have been prepared, including achiral and chiral examples. The ligands incorporate one to three PYE groups that coordinate to a metal through the exocyclic nitrogen atom of each PYE moiety, and the resulting metal complexes have been characterised by methods including single-crystal X-ray diffraction and NMR spectroscopy to examine metal-ligand bonding and ligand dynamics. Upon coordination of a PYE ligand to a proton or metal-complex fragment, the solid-state structures, NMR spectroscopy and DFT studies indicate that charge redistribution occurs within the PYE heterocyclic ring to give a contribution from a pyridinium-amido-type resonance structure. Additional IR spectroscopy and computational studies suggest that PYE ligands are strong donor ligands. NMR spectroscopy shows that for metal complexes there is restricted motion about the exocyclic C-N bond, which projects the heterocyclic N-substituent in the vicinity of the metal atom causing restricted motion in chelating-ligand derivatives. Solid-state structures and DFT calculations also show significant steric congestion and secondary metal-ligand interactions between the metal and ligand C-H bonds.</p>