People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schnelle, Walter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Enhancement of the anomalous Hall effect by distorting the Kagome lattice in an antiferromagnetic materialcitations
- 2023Bismuth-Rich Intermetallic Rods with a Note of Zintl-Phasecitations
- 2023Nano-scale new Heusler compounds NiRh2Sb and CuRh2Sbcitations
- 2022Spiral magnetism, spin flop, and pressure-induced ferromagnetism in the negative charge-transfer-gap insulator Sr$_2$FeO$_4$citations
- 2022Spiral magnetism, spin flop, and pressure-induced ferromagnetism in the negative charge-transfer-gap insulator Sr2FeO4citations
- 2019Complex magnetic phase diagram of metamagnetic MnPtSi
- 2019Complex magnetic phase diagram of metamagnetic MnPtSi.citations
- 2018Local magnetism in MnSiPt rules the chemical bondcitations
- 2018Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd)citations
- 2016Superconductivity in Weyl semimetal candidate MoTe2citations
- 2014Ca3Pt4+xGe13−y and Yb3Pt4Ge13: new derivatives of the Pr3Rh4Sn13 structure typecitations
- 2012Dy₀.₆₄{Dy₅[Fe₂C₉]} : A complex carbide with a composite structurecitations
- 2012Dy0.64Dy5Fe2C9 : A complex carbide with a composite structurecitations
- 2010Thermal, Magnetic, Electronic and Superconducting Properties of Rare-Earth Metal Pentagermanides REGe5 (RE = La, Nd, Sm, Gd) and Synthesis of TbGe5citations
- 2010Valence of cerium ions in selected ternary compounds from the system Ce-Rh-Sn
- 2009Cationic Clathrate I Si46-xPxTey (6.6(1) < y < 7.5(1), x < 2y) : Crystal Structure, Homogeneity Range, and Physical Propertiescitations
- 2009The polar mixed-valent lanthanum iron(II, III) sulfide La3Fe2-δS7citations
- 2008The first silicon-based cationic clathrate III with high thermal stability: Si172-xPxTey (x=2y, y>20).citations
- 2008The layered metal Ti2PTe2citations
- 2007Sn20.5□3.5As22I8: A Largely Disordered Cationic Clathrate with a New Type of Superstructure and Abnormally Low Thermal Conductivitycitations
Places of action
Organizations | Location | People |
---|
article
Sn20.5□3.5As22I8: A Largely Disordered Cationic Clathrate with a New Type of Superstructure and Abnormally Low Thermal Conductivity
Abstract
Sn(20.5)As(22)I(8), a new cationic clathrate, has been prepared by using an ampoule technique. According to the X-ray powder diffraction data, it crystallizes in the face-centered cubic space group F23 or Fm(-)3 with a unit-cell parameter of a=22.1837(4) A. Single-crystal X-ray data allowed solution of the crystal structure in the subcell with a unit-cell parameter of a(0)=11.092(1) A and the space group Pm(-)3n (R=5.7 %). Sn(20.5)As(22)I(8) (or Sn(20.5) square(3.5)As(22)I(8), accounting for the vacancies in the framework) possesses the clathrate-I type crystal structure, with iodine atoms occupying the cages of the cationic framework composed of tin and arsenic atoms. The crystal structure is strongly disordered. The main features are a random distribution of vacancies, and shifts of the tin and arsenic atoms away from their ideal positions. The coordination of the tin atoms has been confirmed by using (119)Sn Mössbauer spectroscopy. Electron diffraction and high-resolution electron microscopy (HREM) analyses have confirmed the presence of the superstructure ordering, which results in a doubling of the unit-cell parameter and a change of the space group from Pm(-)3n to either F23 or Fm(-)3. Analysis of the crystal structure has led to the construction of four ordering models for the superstructure, which have been corroborated by HREM, and has also led to the identification of disordered regions originating from overlap of the different types of ordered domains. Sn(20.5)As(22)I(8) is a diamagnetic semiconductor with an estimated band gap of 0.45 eV; it displays abnormally low thermal conductivity, with the room temperature value being just 0.5 W m(-1) K(-1).