Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Olenev, Andrei V.

  • Google
  • 1
  • 10
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Sn20.5□3.5As22I8: A Largely Disordered Cationic Clathrate with a New Type of Superstructure and Abnormally Low Thermal Conductivity45citations

Places of action

Chart of shared publication
Shevelkov, Andrei V.
1 / 9 shared
Kovnir, Kirill
1 / 13 shared
Grin, Yuri
1 / 25 shared
Tendeloo, Gustaaf Van
1 / 15 shared
Schnelle, Walter
1 / 20 shared
Sobolev, Alexey
1 / 8 shared
Baitinger, Michael
1 / 7 shared
Lebedev, Oleg I.
1 / 28 shared
Presniakov, Igor A.
1 / 7 shared
Prots, Yuri
1 / 1 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Shevelkov, Andrei V.
  • Kovnir, Kirill
  • Grin, Yuri
  • Tendeloo, Gustaaf Van
  • Schnelle, Walter
  • Sobolev, Alexey
  • Baitinger, Michael
  • Lebedev, Oleg I.
  • Presniakov, Igor A.
  • Prots, Yuri
OrganizationsLocationPeople

article

Sn20.5□3.5As22I8: A Largely Disordered Cationic Clathrate with a New Type of Superstructure and Abnormally Low Thermal Conductivity

  • Olenev, Andrei V.
  • Shevelkov, Andrei V.
  • Kovnir, Kirill
  • Grin, Yuri
  • Tendeloo, Gustaaf Van
  • Schnelle, Walter
  • Sobolev, Alexey
  • Baitinger, Michael
  • Lebedev, Oleg I.
  • Presniakov, Igor A.
  • Prots, Yuri
Abstract

Sn(20.5)As(22)I(8), a new cationic clathrate, has been prepared by using an ampoule technique. According to the X-ray powder diffraction data, it crystallizes in the face-centered cubic space group F23 or Fm(-)3 with a unit-cell parameter of a=22.1837(4) A. Single-crystal X-ray data allowed solution of the crystal structure in the subcell with a unit-cell parameter of a(0)=11.092(1) A and the space group Pm(-)3n (R=5.7 %). Sn(20.5)As(22)I(8) (or Sn(20.5) square(3.5)As(22)I(8), accounting for the vacancies in the framework) possesses the clathrate-I type crystal structure, with iodine atoms occupying the cages of the cationic framework composed of tin and arsenic atoms. The crystal structure is strongly disordered. The main features are a random distribution of vacancies, and shifts of the tin and arsenic atoms away from their ideal positions. The coordination of the tin atoms has been confirmed by using (119)Sn Mössbauer spectroscopy. Electron diffraction and high-resolution electron microscopy (HREM) analyses have confirmed the presence of the superstructure ordering, which results in a doubling of the unit-cell parameter and a change of the space group from Pm(-)3n to either F23 or Fm(-)3. Analysis of the crystal structure has led to the construction of four ordering models for the superstructure, which have been corroborated by HREM, and has also led to the identification of disordered regions originating from overlap of the different types of ordered domains. Sn(20.5)As(22)I(8) is a diamagnetic semiconductor with an estimated band gap of 0.45 eV; it displays abnormally low thermal conductivity, with the room temperature value being just 0.5 W m(-1) K(-1).

Topics
  • impedance spectroscopy
  • electron diffraction
  • semiconductor
  • electron microscopy
  • random
  • tin
  • thermal conductivity
  • space group
  • Arsenic
  • Mössbauer spectroscopy