Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jones, L. F.

  • Google
  • 2
  • 17
  • 143

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2008Grafting derivatives of Mn-6 single-molecule magnets with high anisotropy energy barrier on Au(111) surface34citations
  • 2004New routes to polymetallic clusters109citations

Places of action

Chart of shared publication
Biagi, R.
1 / 2 shared
Milios, C. J.
1 / 1 shared
Pennino, U. Del
1 / 1 shared
Corradini, V.
1 / 3 shared
Evangelisti, M.
1 / 1 shared
Brechin, Euan K.
2 / 21 shared
Moro, F.
1 / 2 shared
Renzi, V. De
1 / 1 shared
Brockman, J.
1 / 1 shared
Wernsdorfer, W.
1 / 6 shared
Murugesu, M.
1 / 2 shared
Sanudo, E. C.
1 / 2 shared
Collison, D.
1 / 3 shared
Christou, G.
1 / 5 shared
Teat, S. J.
1 / 5 shared
Rajaraman, G.
1 / 3 shared
Raftery, J.
1 / 5 shared
Chart of publication period
2008
2004

Co-Authors (by relevance)

  • Biagi, R.
  • Milios, C. J.
  • Pennino, U. Del
  • Corradini, V.
  • Evangelisti, M.
  • Brechin, Euan K.
  • Moro, F.
  • Renzi, V. De
  • Brockman, J.
  • Wernsdorfer, W.
  • Murugesu, M.
  • Sanudo, E. C.
  • Collison, D.
  • Christou, G.
  • Teat, S. J.
  • Rajaraman, G.
  • Raftery, J.
OrganizationsLocationPeople

article

New routes to polymetallic clusters

  • Brockman, J.
  • Wernsdorfer, W.
  • Murugesu, M.
  • Sanudo, E. C.
  • Collison, D.
  • Christou, G.
  • Teat, S. J.
  • Jones, L. F.
  • Brechin, Euan K.
  • Rajaraman, G.
  • Raftery, J.
Abstract

<p>The syntheses, structures and magnetic properties of three new Mn-III clusters, [Mn26O17(OH)(8)(OMe)(4)F-10(bta)(22)(MeOH)(14)(H2O)(2)] (1), [Mn10O6(OH)(2)(bta)(8)(py)(8)F-8] (2) and [NHEt3](2)[Mn3O(bta)(6)F-3] (3), are reported (bta anion of benzotriazole), thereby demonstrating the utility of MnF3 as a new synthon in Mn cluster chemistry. The "melt" reaction (100 degreesC) between MnF3 and benzotriazole (btaH, C6H5N3) under an inert atmosphere, followed by dissolution in MeOH produces the cluster [Mn26O17(OH)(8)(OMe)(4)F-10(bta)(22)(MeOH)(14)(H2O)(2)] (1) after two weeks. Complex 1 crystallizes in the triclinic space group P!, and consists of a complicated array of metal tetrahedra linked by mu(3)-O2- ions, mu(3)- and mu(2)-OH- ions, mu(2)-MeO- ions and mu(2)-bta(-) ligands. The "simpler" reaction between MnF3 and btaH in boiling MeOH (50 degreesC) also produces complex 1. If this reaction is repeated in the presence of pyridine, the decametallic complex [Mn10O6(OH)(2)(bta)(8)(py)(8)F-8] (2) is produced. Complex 2 crystallizes in the triclinic space group Pi and consists of a "supertetrahedral" [Mn-10(III)] core bridged by six mu(3)-O2- ions, two mu(3)-OH- ions, four mu(2)-F- ions and eight mu(2)-bta(-) ions. The replacement of pyridine by triethylamine in the same reaction scheme produces the trimetallic species [NHEt3](2)[Mn3O(bta)(6)F-3] (3). Complex 3 crystallises in the monoclinic space group P2(1)/c and has a structure analogous to that of the basic metal carboxylates of general formula [M3O(RCO2)(6)L-3](0/+), which consists of an oxo-centred metal triangle with mu(2)-bta(-) ligands bridging each edge of the triangle and the fluoride ions acting as the terminal ligands. DC magnetic susceptibility measurements in the 300-1.8 K and 0.1-7 T ranges were investigated for all three complexes. For each, the value of chi(M)T decreases with decreasing temperatures; this indicates the presence of dominant antiferromagnetic exchange interactions in 1-3. For complex 1, the low-temperature value of chi(M)T is 10 cm(3) Kmol(-1) and fitting of the magnetisation data gives S=4, g=2.0 and D=-0.90cm(-1). For complex 2, the value of chi(M)T falls to a value of approximately 5.0 cm(3) K mol(-1) at 1.8 K, which is consistent with a small spin ground state. For the triangular complex 3, the best fit to the experimental chi(M)T versus T data was obtained for the following parameters: J(a)=-5.01cm(-1), J(b)=+9.16cm(-1) and g=2.00, resulting in an S=2 spin ground state. DFT calculations on 3, however, suggest an S=1 or S=0 ground state with J(a) = -2.95 cm(-1) and J(b) = -2.12 cm(-1). AC susceptibility measurements performed on 1 in the 1.8-4.00 K range show the presence of out-of-phase AC susceptibility signals, but no peaks.</p><p>Low-temperature single-crystal studies performed on 1 on an array of micro-SQUIDS show the time- and temperature-dependent hysteresis loops indicative of single-molecule magnetism behaviour.</p>

Topics
  • impedance spectroscopy
  • cluster
  • melt
  • density functional theory
  • susceptibility
  • space group