People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Straßer, Alexander
Technical University of Munich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Integrating Wire Arc Additive Manufacturing into Selective Paste Intrusion for Reinforced Concrete Elements: Effect of Temperature on the Mechanical Performancecitations
- 2023Additive Manufacturing by the Selective Paste Intrusion Method: Effect of the Distance of the Print Nozzle to the Particle bed on the Print Qualitycitations
- 2023Selective Paste Intrusion: Integration of Reinforcement by WAAM — Concept and Overview of the Current Researchcitations
Places of action
Organizations | Location | People |
---|
article
Integrating Wire Arc Additive Manufacturing into Selective Paste Intrusion for Reinforced Concrete Elements: Effect of Temperature on the Mechanical Performance
Abstract
<jats:title>Abstract</jats:title><jats:p>This research aims to integrate the Wire Arc Additive Manufacturing (WAAM) process into the Selective Paste Intrusion (SPI) process to enable the production of reinforced concrete elements with complex geometries. However, the high temperatures generated during the steel melting process in WAAM can locally lead to a full stop of hydration which consequently is linked to a decrease of the mechanical properties of the concrete in the bonding zone around the reinforcing bar. This study aims to determine the maximum allowable temperature at which concrete retains sufficient hardening conditions which allows strength development when combining SPI with WAAM. In practical application, this temperature limit can directly be affected by e.g. the protruding length of the WAAM‐reinforcing bar above the SPI particle bed or external cooling strategies. As continuation of previous research, this study establishes a link between actual and targeted temperatures in the steel bar to allow the combination of WAAM and SPI processes. Temperature limits without compromising mechanical performance are investigated, and the need for and extent of additional cooling measures are evaluated. The results show that temperatures of the concrete in the fresh state can reach up to 70°C without weakening its mechanical performance.</jats:p>