Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Müller, Eckehard

  • Google
  • 2
  • 11
  • 7

Bochum University of Applied Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Fatigue crack initiation and propagation in plain and notched PBF-LB/M, WAAM, and wrought 316L stainless steel specimens7citations
  • 2023Experimental investigations of residual stresses in thick high‐strength steel platescitations

Places of action

Chart of shared publication
Schubnell, Jan
1 / 13 shared
Sheikhi, Shahram
1 / 6 shared
Ehlers, Sören
1 / 24 shared
Chen, Ting
1 / 7 shared
Klusemann, Benjamin
1 / 110 shared
Sarmast, Ardeshir
1 / 6 shared
Shen, Junjun
1 / 12 shared
Braun, Moritz
1 / 20 shared
Fassmer, Henrik
1 / 1 shared
Mensinger, Martin
1 / 4 shared
Schäfers, Michael
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Schubnell, Jan
  • Sheikhi, Shahram
  • Ehlers, Sören
  • Chen, Ting
  • Klusemann, Benjamin
  • Sarmast, Ardeshir
  • Shen, Junjun
  • Braun, Moritz
  • Fassmer, Henrik
  • Mensinger, Martin
  • Schäfers, Michael
OrganizationsLocationPeople

article

Experimental investigations of residual stresses in thick high‐strength steel plates

  • Mensinger, Martin
  • Schäfers, Michael
  • Müller, Eckehard
Abstract

<jats:title>Abstract</jats:title><jats:p>Residual stresses strongly influence the load‐bearing capacity of steel members under compressive axial loads. Current developments in steel and steel‐concrete composite structures imply the use of high‐strength steel grades up to 960 MPa. For such steel plates, only limited results of residual stress investigations are known so far. The authors have applied two established measuring methodologies like the sectioning method and X‐ray diffraction to determine the residual stress state of 40 mm thick steel plates and different widths. The results show that the distribution and amount of longitudinal residual stresses are mainly determined by the oxyfuel‐cutting procedure used to manufacture the specimens. The distribution over the thickness could be determined by X‐ray diffraction. Compared to the results of examinations on lower‐grade steel plates an assumed correlation of residual stresses and steel grades could not be observed. Consequently, residual stresses have a reduced influence on the load‐bearing capacities of structures prone to buckling as the ratio of yield strength to residual stress states declines significantly.</jats:p>

Topics
  • strength
  • steel
  • composite
  • yield strength
  • sectioning