Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Limani, Ndrina

  • Google
  • 2
  • 8
  • 38

CEA Saclay

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Scrutinizing intrinsic oxygen reduction reaction activity of a Fe−N−C catalyst via scanning electrochemical cell microscopy19citations
  • 2023Scrutinizing intrinsic oxygen reduction reaction activity of a Fe−N−C catalyst via scanning electrochemical cell microscopy19citations

Places of action

Chart of shared publication
Schuhmann, Wolfgang
2 / 100 shared
Kim, Moonjoo
2 / 6 shared
Cornut, Renaud
2 / 9 shared
Jousselme, Bruno
2 / 17 shared
Quast, Thomas
2 / 6 shared
Tetteh, Emmanuel Batsa
1 / 9 shared
Scorsone, Emmanuel
2 / 8 shared
Batsa Tetteh, Emmanuel
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Schuhmann, Wolfgang
  • Kim, Moonjoo
  • Cornut, Renaud
  • Jousselme, Bruno
  • Quast, Thomas
  • Tetteh, Emmanuel Batsa
  • Scorsone, Emmanuel
  • Batsa Tetteh, Emmanuel
OrganizationsLocationPeople

article

Scrutinizing intrinsic oxygen reduction reaction activity of a Fe−N−C catalyst via scanning electrochemical cell microscopy

  • Schuhmann, Wolfgang
  • Kim, Moonjoo
  • Cornut, Renaud
  • Limani, Ndrina
  • Jousselme, Bruno
  • Quast, Thomas
  • Tetteh, Emmanuel Batsa
  • Scorsone, Emmanuel
Abstract

Carbon-based nanomaterials are renowned for their exceptional properties, making them propitious candidates for oxygen reduction reaction (ORR) electrocatalysis. However, their intrinsic activity is often challenging to investigate unambiguously with conventional methodologies due to the inherent complexities of such systems and the material itself. Zooming into the material and gaining electrochemical information with high resolution is a way to get rid of many experimental factors that influence the catalytic activity in macro-scale measurements. Herein, we employ nano-scale scanning electrochemical cell microscopy (SECCM) to investigate individual catalyst agglomerates with and without Nafion content. The intrinsic ORR activity of the catalyst was unravelled by using a unique approach of normalizing the data of all measured points by their distinctive electrochemical surface area (ECSA). When coupling with scanning electron microscopy (SEM), the structure and morphology of the catalytically active agglomerates were visualized.

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • scanning electron microscopy
  • Oxygen
  • normalizing